【題目】如圖,的直徑,點上,過點的切線,延長,使,連接,,與交于點.若的半徑為,,則的外接圓的半徑為________

【答案】

【解析】

根據(jù)圓周角定理得∠ACB=90°,BC=CD則可判斷△ABD為等腰三角形,得到AD=AB=6,所以AE=ADDE=4再根據(jù)切線的性質(zhì)得OCCM,接著證明OCADCMAD,所以∠AEC=90°,然后證明RtACERtADC,利用相似比計算出AC=2,最后根據(jù)圓周角定理的推論可確定△AEC的外接圓的半徑

AB是⊙O的直徑,∴∠ACB=90°,ACBD

BC=CD,∴△ABD為等腰三角形AD=AB=6,AE=ADDE=62=4

CM為切線OCCM

OA=OB,CD=CBOC為△BAD的中位線,OCAD,CMAD,∴∠AEC=90°.

∵∠CAE=DAC,RtACERtADC,==,AC=2

∵△AEC為直角三角形,AC為斜邊∴△AEC的外接圓的半徑=AC=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0),下列結(jié)論:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤當(dāng)x>﹣1時,y>0.其中正確結(jié)論的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆漢字聽寫大賽,學(xué)生經(jīng)選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學(xué)生成績?yōu)?/span>(分),且,將其按分數(shù)段分為五組,繪制出以下不完整表格:

組別

成績(分)

頻數(shù)(人數(shù))

頻率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

請根據(jù)表格提供的信息,解答以下問題:

(1)本次決賽共有 名學(xué)生參加;

(2)直接寫出表中a= ,b= ;

(3)請補全下面相應(yīng)的頻數(shù)分布直方圖;

(4)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,AB=AD. ∠B+∠ADC=180°,點E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.

圖1 圖2 圖3

(1)思路梳理

將△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線. 易證△AFG ,故EF,BE,DF之間的數(shù)量關(guān)系為 ;

(2)類比引申

如圖2,在圖1的條件下,若點E,F(xiàn)由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.

(3)聯(lián)想拓展

如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°. 若BD=1,EC=2,則DE的長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,且、、四點在同一直線上.

1)在圖1中,請你用無刻度的直尺作出線段的垂直平分線;

2)在圖2中,請你用無刻度的直尺作出線段的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠B=60°,CF平分∠ACB

1)求∠ACE的度數(shù).

2)若CDAB于點D,∠CDF=75°,求證:△CFD是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知中,厘米,、分別從點、點同時出發(fā),沿三角形的邊運動,已知點的速度是1厘米/秒的速度,點的速度是2厘米/秒,當(dāng)點第一次到達點時,、同時停止運動.

1同時運動幾秒后,、兩點重合?

2同時運動幾秒后,可得等邊三角形

3、邊上運動時,能否得到以為底邊的等腰,如果存在,請求出此時、運動的時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD連接EB,EC,DB添加一個條件,不能使四邊形DBCE成為矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象過兩點.

1)求直線的函數(shù)表達式

2)直線軸于點為直線上一動點

①求的最小值;

是直線上任意一點,為直線上另一動點,若是以為直角邊長的等腰直角三角形,求點的坐標.

查看答案和解析>>

同步練習(xí)冊答案