【題目】閱讀下列材料,完成相應(yīng)的任務(wù):

全等四邊形根據(jù)全等圖形的定義可知:四條邊分別相等,四個(gè)角也分別相等的兩個(gè)四邊形全等.探索三角形全等的條件時(shí),我們把兩個(gè)三角形中一條邊相等一個(gè)角相等稱為一個(gè)條件.智慧小組的同學(xué)類比探索三角形全等條件的方法,探索四邊形全等的條件,進(jìn)行了如下思考:如圖 1,四邊形ABCD和四邊形A'B'C'D'中,連接對(duì)角線AC,A'C',這樣兩個(gè)四邊形全等的問題就轉(zhuǎn)化為ABCA'B'C'ACD A 'C 'D '的問題.若先給定ABCA'B'C'的條件,只要再增加2個(gè)條件使ACDA'C'D'即可推出兩個(gè)四邊形中四條邊分別相等,四個(gè)角也分別相等,從而說明兩個(gè)四邊形全等.

按照智慧小組的思路,小明對(duì)圖1中的四邊形ABCD和四邊形A'B'C'D'先給出如下條件:ABA'B',∠B=∠B'BCB'C',小亮在此基礎(chǔ)上又給出“ADA'D'CDC'D'兩個(gè)條件,他們認(rèn)為滿足這五個(gè)條件能得到四邊形ABCD四邊形A'B'C'D'”.

(1)請(qǐng)根據(jù)小明和小亮給出的條件,說明四邊形ABCD四邊形A'B'C'D'的理由;

(2)請(qǐng)從下面A,B兩題中任選一題作答,我選擇______.

A.在材料中小明所給條件的基礎(chǔ)上,小穎又給出兩個(gè)條件“ADA'D',∠BCD=∠B'C'D',滿足這五個(gè)條件_______(不能”)得到四邊形 ABCD四邊形A'B'C'D'”.

B.在材料中小明所給條件的基礎(chǔ)上,再添加兩個(gè)關(guān)于原四邊形的條件(要求:不同于小亮的條件),使四邊形ABCD四邊形A'B'C'D',你添加的條件是:_____________________.

【答案】(1)證明見解析;(2)A題:不能;B題:①∠D=D′;②∠DAC=D′A′C′.

【解析】

根據(jù)全等三角形判定定理求解即可.

(1)證明:在△ABC和△A'B'C'中,

∴△ABCA'B'C'(SAS)

ACA'C',∠BAC=∠B'A'C',∠BCA=∠B'C'A',

在△ACD 和△A'C'D'中,

∴△ACDA'C'D'(SSS)

∴∠DAC=∠D'A'C',∠DCA=∠D'C'A',∠D=∠D'

∴∠DAC+BAC=∠D'A'C'+B'A'C',∠BCA+DCA=∠D'C'A'+B'C'A'

即:∠DAB=∠D'A'B',∠DCB=∠D'C'B'

ABA'B',BCB'C'CDC'D',DAD'A',

DAB=∠D'A'B',∠B=∠B',∠DCB=∠D'C'B',∠D=∠D'

∴四邊形ABCD四邊形A'B'C'D'

(2)A題:小明給出的條件可得:在△ABC和△A'B'C'中,

∴△ABCA'B'C'(SAS)

ACA'C'

根據(jù)ADA'D',∠BCD=∠B'C'D',不能判定△ACDA'C'D'

∴不能得到四邊形ABCD四邊形A'B'C'D'

故答案為:不能

B.小明給出的條件可得:在△ABC和△A'B'C'中,

∴△ABCA'B'C'(SAS)

ACA'C',∠BAC=∠B'A'C',∠BCA=∠B'C'A',

在△ACD和△A'C'D'中,

∴△ACDA'C'D'(AAS)

ADA'D',CDC'D',∠DCA=∠D'C'A'.

∴∠DAC+BAC=∠D'A'C'+B'A'C',∠BCA+DCA=∠D'C'A' +B'C'A'

即:∠DAB=∠D'A'B',∠DCB=∠D'C'B'

ABA'B',BCB'C',CDC'D'DAD'A',

DAB=∠D'A'B',∠B=∠B',∠DCB=∠D'C'B',∠D=∠D'

∴四邊形ABCD四邊形A'B'C'D'

故答案為:∠D=D′,∠DAC=D′A′C′.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了加強(qiáng)訓(xùn)練學(xué)生的籃球和足球運(yùn)球技能,準(zhǔn)備購(gòu)買一批籃球和足球用于訓(xùn)練,已知1個(gè)籃球和2個(gè)足球共需116元;2個(gè)籃球和3個(gè)足球共需204

求購(gòu)買1個(gè)籃球和1個(gè)足球各需多少元?

若學(xué)校準(zhǔn)備購(gòu)進(jìn)籃球和足球共40個(gè),并且總費(fèi)用不超過1800元,則籃球最多可購(gòu)買多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四川雅安發(fā)生地震后,某校學(xué)生會(huì)向全校1900名學(xué)生發(fā)起了“心系雅安”捐款活動(dòng),為了解捐款情況,學(xué)會(huì)生隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計(jì)圖和圖,請(qǐng)根據(jù)相關(guān)信息,解答下列是問題:

(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為    ,圖中m的值是    

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為10元的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(1 ;(2 ;(3; 4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)在平均每天比原計(jì)劃多生產(chǎn) 50 臺(tái)機(jī)器,現(xiàn)在生產(chǎn) 600 臺(tái)機(jī)器所需時(shí)間與原計(jì)劃生產(chǎn) 450 臺(tái)機(jī)器所需時(shí)間相同.

(1)現(xiàn)在平均每天生產(chǎn)多少臺(tái)機(jī)器;

(2)生產(chǎn) 3000 臺(tái)機(jī)器,現(xiàn)在比原計(jì)劃提前幾天完成.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)的圖象的對(duì)稱軸是直線x=1,且經(jīng)過點(diǎn)(0,2).有下列結(jié)論:ac0;;a+c2-b; x=-5x=7時(shí)函數(shù)值相等.其中正確的結(jié)論有

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:在等腰直角三角形ABC中,, 直線過點(diǎn),過點(diǎn)為一銳角頂點(diǎn)作,且點(diǎn)在直線上(不與點(diǎn)重合),如圖1, 交于點(diǎn),試判斷的數(shù)量關(guān)系,并說明理由.探究展示:小星同學(xué)展示出如下正確的解法:

解:,證明如下:

過點(diǎn),交于點(diǎn)

為等腰直角三角形

(依據(jù)

(依據(jù)

1)反思交流:上述證明過程中的“依據(jù)”和“依據(jù)”分別是指:

依據(jù)

依據(jù)

拓展延伸:(2)在圖2中,延長(zhǎng)線交于點(diǎn),試判斷的數(shù)量關(guān)系,并寫出證明過程

3)在圖3中,延長(zhǎng)線交于點(diǎn),試判斷的數(shù)量關(guān)系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

分別取, , 時(shí),試求出各函數(shù)表達(dá)式,并說出這三個(gè)函數(shù)的一個(gè)共同點(diǎn).

)對(duì)于任意負(fù)實(shí)數(shù),當(dāng)時(shí), 的增大而增大,試求出的最大整數(shù)值.

)點(diǎn), 是函數(shù)圖象上兩個(gè)點(diǎn),滿足若,試比較的大小關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案