【題目】如圖,點A、C分別在一個含45°的直角三角板HBE的兩條直角邊BH和BE上,且BA=BC,過點C作BE的垂線CD,過E點作EF⊥AE交∠DCE的角平分線于F點,交HE于P.

(1)試判斷△PCE的形狀,并請說明理由;

(2)若∠HAE=120°,AB=3,求EF的長.

【答案】(1)△PCE是等腰直角三角形(2)6

【解析】

1)根據∠PCEDCE×90°=45°,求證∠CPE90°,然后即可判斷三角形的形狀.

2)根據∠HEB=∠H45°得HBBE,再根據BABC和∠HAE120°,利用ASA證△HAE≌△CEF,得AEEF,又因為AE2AB.然后即可求得EF

1△PCE是等腰直角三角形,

理由如下:

∵∠PCEDCE×90°45°

PEC45°

∴∠PCE=∠PEC

CPE90°

∴△PCE是等腰直角三角形

2)∵∠HEB=∠H45°

HBBE

BABC

AHCE

而∠HAE120°

∴∠BAE60°,∠AEB30°

又∵∠AEF90°

∴∠CEF120°=∠HAE

而∠H=∠FCE45°

∴△HAE≌△CEFASA

AEEF

又∵AE2AB2×36

EF6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某公路檢測中心在一事故多發(fā)地帶安裝了一個測速儀,檢測點設在距離公路10m的A處,測得一輛汽車從B處行駛到C處所用的時間為0.9秒.已知B=30°,C=45°

(1)求B,C之間的距離;(保留根號)

(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據:,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明想了解全校3000名同學對新聞、體育、音樂、娛樂、戲曲五類電視節(jié)目的喜愛況,從中抽取了一部分同學進行了一次抽樣調查,利用所得數(shù)據繪制成下面的統(tǒng)計圖:根據圖中所給信息,全校喜歡娛樂類節(jié)目的學生大約有( )人.

A. 1080 B. 900 C. 600 D. 108

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更好地推進太原市生活垃圾分類工作,改善城市生態(tài)環(huán)境,20191217日,太原市政府召開了太原市生活垃圾分類推進會,意味著太原垃圾分類戰(zhàn)役的全面打響.某小區(qū)準備購買AB兩種型號的垃圾箱,通過市場調研得知:購買3A型垃圾箱和2B型垃圾箱共需540元,購買2A型垃圾箱比購買3B型垃圾箱少用160元.

1)求每個A型垃圾箱和B型垃圾箱各多少元?

2)該小區(qū)物業(yè)計劃用不多于2100元的資金購買A、B兩種型號的垃圾箱共20個,則該小區(qū)最多可以購買B型垃圾箱多少個?

3)在(2)的條件下,要求至少購買3B型垃圾箱,請設計出最省錢的購買方案,并求出最少購買費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將九年級部分男生擲實心球的成績進行整理,分成5個小組(x表示成績,單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.

(1)這部分男生有多少人?其中成績合格的有多少人?
(2)這部分男生成績的中位數(shù)落在哪一組?扇形統(tǒng)計圖中D組對應的圓心角是多少度?
(3)要從成績優(yōu)秀的學生中,隨機選出2人介紹經驗,已知甲、乙兩位同學的成績均為優(yōu)秀,求他倆至少有1人被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售如下:

每人銷售件數(shù)

1800

510

250

210

150

120

人數(shù)

1

1

3

5

3

2

1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù).

2)假設銷售部負責人把每位營銷員的月銷售額定為320件,你認為是否合理?為什么?如不合理,請你制定一個合理的銷售定額,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,若,,下列結論:①;②;③;④互補;⑤,其中正確的有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的頂點坐標是A(﹣7,1),B(1,1),C(1,7).線段DE的端點坐標是D(7,﹣1),E(﹣1,﹣7).

(1)試說明如何平移線段AC,使其與線段ED重合;
(2)將△ABC繞坐標原點O逆時針旋轉,使AC的對應邊為DE,請直接寫出點B的對應點F的坐標;
(3)畫出(2)中的△DEF,并和△ABC同時繞坐標原點O逆時針旋轉90°,畫出旋轉后的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小強為了測量一幢高樓高AB,在旗桿CD與樓之間選定一點P.測得旗桿頂C視線PC與地面夾角∠DPC=36°,測樓頂A視線PA與地面夾角∠APB=54°,量得P到樓底距離PB與旗桿高度相等,等于10米,量得旗桿與樓之間距離為DB=36米,小強計算出了樓高,樓高AB是多少米?

查看答案和解析>>

同步練習冊答案