已知x=2m+n+2和x=m+2n時(shí),多項(xiàng)式x2+4x+6的值相等,且m﹣n+2≠0,則當(dāng)x=3(m+n+1)時(shí),多項(xiàng)式x2+4x+6的值等于  
3.

試題分析:先將x=2m+n+2和x=m+2n時(shí),多項(xiàng)式x2+4x+6的值相等理解為x=2m+n+2和x=m+2n時(shí),二次函數(shù)y=x2+4x+6的值相等,則可求拋物線的對稱軸為:;又二次函數(shù)y=x2+4x+6的對稱軸為直線x=-2,故可得出,化簡得m+n=-2,所以當(dāng)x=3(m+n+1)=3×(-2+1)=-3時(shí),x2+4x+6=3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=16cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P在邊AB上沿AB方向以2cm/s的速度勻速運(yùn)動,點(diǎn)Q在邊BC上沿BC方向以1cm/s的速度勻速運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時(shí)間為x秒,△PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請寫出一個(gè)圖象為開口向下,并且與軸交于點(diǎn)的二次函數(shù)表達(dá)式     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一家化工廠原來每月利潤為120萬元,從今年1月起安裝使用回收凈化設(shè)備(安裝時(shí)間不計(jì)),一方面改善了環(huán)境,另一方面大大降低原料成本.據(jù)測算,使用回收凈化設(shè)備后的1至x月(1≤x≤12)的利潤的月平均值w(萬元)滿足w=10x+90,第二年的月利潤穩(wěn)定在第1年的第12個(gè)月的水平.
(1)設(shè)使用回收凈化設(shè)備后的1至x月(1≤x≤12)的利潤和為y,寫出y關(guān)于x的函數(shù)關(guān)系式,并求前幾個(gè)月的利潤和等于700萬元;
(2)當(dāng)x為何值時(shí),使用回收凈化設(shè)備后的1至x月的利潤和與不安裝回收凈化設(shè)備時(shí)x個(gè)月的利潤和相等;
(3)求使用回收凈化設(shè)備后兩年的利潤總和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

把拋物線y=x2向左平移1個(gè)單位,所得的新拋物線的函數(shù)表達(dá)式為( )
A.y=x2+1B.y=(x+1) 2C.y=x2-1D.y=(x-1) 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=-2(x-5)2+3的頂點(diǎn)坐標(biāo)是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,用長為20米的籬笆恰好圍成一個(gè)扇形花壇,且扇形花壇的圓心角小于180°,設(shè)扇形花壇的半徑為米,面積為平方米.(注:的近似值取3)

(1)求出的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當(dāng)半徑為何值時(shí),扇形花壇的面積最大,并求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(0,﹣2),與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,且﹣1<x1<0,1<x2<2,下列結(jié)論正確的是(  )
A.a(chǎn)<0 B.a(chǎn)﹣b+c<0
C.>1D.4ac﹣b2<﹣8a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的最小值是           

查看答案和解析>>

同步練習(xí)冊答案