閱讀下列材料:
1
1×3
=
1
2
(1-
1
3
)
,
1
3×5
=
1
2
(
1
3
-
1
5
)
,
1
5×7
=
1
2
(
1
5
-
1
7
)
,…
1
17×19
=
1
2
(
1
17
-
1
19
)

1
1×3
+
1
3×5
+
1
5×7
+…+
1
17×19

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)+…+
1
2
(
1
17
-
1
19
)

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
17
-
1
19
)

=
1
2
(1-
1
19
)=
9
19

解答下列問題:
(1)在和式
1
1×3
+
1
3×5
+
1
5×7
+…
中,第6項為
 
,第n項是
 

(2)上述求和的想法是通過逆用
 
法則,將和式中的各分數(shù)轉(zhuǎn)化為兩個數(shù)之差,使得除首末兩項外的中間各項可以
 
,從而達到求和的目的.
(3)受此啟發(fā),請你解下面的方程:
1
x(x+3)
+
1
(x+3)(x+6)
+
1
(x+6)(x+9)
=
3
2x+18
分析:此題是閱讀分析題,解此題的關鍵是認真審題,找到規(guī)律(兩個連續(xù)奇數(shù)的積的倒數(shù)等于它們的倒數(shù)差的一半),再依據(jù)規(guī)律解題即可.
解答:解:(1)
1
11×13
,
1
(2n-1)(2n+1)
;

(2)分式減法,對消;

(3)將分式方程變形為
1
3
(
1
x
-
1
x+3
+
1
x+3
…-
1
x+9
)
=
3
2x+18

整理得
1
x
-
1
x+9
=
9
2(x+9)
,方程兩邊都乘以2x(x+9),得
2(x+9)-2x=9x,解得x=2.
經(jīng)檢驗,x=2是原分式方程的根.
點評:此方程若用常規(guī)方法來解,顯然很難,這種先拆分分式化簡后再解分式方程的方法不失是一種技巧.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料:
1
1×3
=
1
2
(1-
1
3
)
1
3×5
=
1
2
(
1
3
-
1
5
)
;
1
5×7
=
1
2
(
1
5
-
1
7
)
;
1
2003×2005
=
1
2
(
1
2003
-
1
2005
)


1
1×3
+
1
3×5
+
1
5×7
+…+
1
2003×2005

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2003
-
1
2005
)

解答下列問題:
(1)在和式
1
1×3
+
1
3×5
+
1
5×7
+…
中,第5項為
 
,第n項為
 
,上述求和的想法是:將和式中的各分數(shù)轉(zhuǎn)化為兩個數(shù)之差,使得首末兩項外的中間各項可以
 
,從而達到求和目的.
(2)利用上述結論計算
1
x(x+2)
+
1
(x+2)(x+4)
+
1
(x+4)(x+6)
+…+
1
(x+2004)(x+2006)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下列材料:
1
1×3
=
1
2
(1-
1
3
)
1
3×5
=
1
2
(
1
3
-
1
5
)
;
1
5×7
=
1
2
(
1
5
-
1
7
)

1
2007×2009
=
1
2
(
1
2007
-
1
2009
)

1
1×3
+
1
3×5
+
1
5×7
+…+
1
2007×2009

=
1
2
(
1
1
-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2007
-
1
2009
)

=
1
2
×(1-
1
2009
)

=
1004
2009

解答下列問題:
(1)在和式
1
1×3
+
1
3×5
+
1
5×7
+…
中,第5項為
 
,第n項為
1
(2n-1)(2n+1)
,上述求和的想法是:將和式中的各分數(shù)轉(zhuǎn)化為兩個數(shù)之差,使得首末兩項外的中間各項可以
 
,從而達到求和目的.
(2)利用上述結論計算
1
x(x+2)
+
1
(x+2)(x+4)
+
1
(x+4)(x+6)
+…+
1
(x+2008)(x+2010)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料:
1
1×3
=
1
2
(1-
1
3
),
1
3×5
=
1
2
(
1
3
-
1
5
),
1
5×7
=
1
2
(
1
5
-
1
7
)…
1
17×19
=
1
2
(
1
17
-
1
19
)

1
1×3
+
1
3×5
+
1
5×7
+
1
7×9
+…+
1
17×19
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
17
-
1
19
)=
9
19

解答問題:
(1)在式
1
1×3
+
1
3×5
+
1
5×7
中,第六項為
 
,第n項為
 
,上述求和的想法是通過逆用
 
法則,將式中各分數(shù)轉(zhuǎn)化為兩個實數(shù)之差,使得除首末兩項外的中間各項可以
 
從而達到求和的目的;
(2)解方程
1
x(x+2)
+
1
(x+2)(x+4)
+…+
1
(x+8)(x+10)
=
5
24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

閱讀下列材料:
1
1×3
=
1
2
(1-
1
3
)
,
1
3×5
=
1
2
(
1
3
-
1
5
)
1
5×7
=
1
2
(
1
5
-
1
7
)
,…
受此啟發(fā),請你解下面的方程:
1
x(x+3)
+
1
(x+3)(x+6)
+
1
(x+6)(x+9)
=
3
2x+18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

閱讀下列材料:
1
1+
2
=
2
-1
(1+
2
)(
2
-1)
=
2
-1,
1
2
+
3
=
3
-
2
(
2
+
3
)(
3
-
2
)
=
3
-
2
,
1
3
+2
=
2-
3
(
3
+2)(2-
3
)
=2-
3
,
1
2+
5
=
5
-2
(2+
5
)(
5
-2)
=
5
-2.讀完以上材料,請你計算下列各題:
(1)
1
3+
10
=
10
-3
10
-3
;
(2)
1
n
+
n+1
=
n+1
-
n
n+1
-
n
;
(3)
1
1+
2
+
1
2
+
3
+
1
3
+2
+…+
1
2010
+
2011
=
2011
-1
2011
-1

查看答案和解析>>

同步練習冊答案