【題目】如圖,在⊙O的內(nèi)接三角形ABC中,,,過CAB的垂線l交⊙O于另一點D,垂足為E.設P上異于AC的一個動點,射線APl于點F,連接PCPD,PDAB于點G.

1)求證:

2)若, ,PD的長.

【答案】(1)證明見解析;(2

【解析】

1)證明相似,思路很常規(guī),就是兩個角相等或邊長成比例.因為題中由圓周角易知一對相等的角,那么另一對角相等就是我們需要努力的方向,因為涉及圓,傾向于找接近圓的角∠DPF,利用補角在圓內(nèi)作等量代換,等弧對等角等知識易得∠DPF=APC,則結論易證.
2)求PD的長,且此線段在上問已證相似的PDF中,很明顯用相似得成比例,再將其他邊代入是應有的思路.利用已知條件易得其他邊長,則PD可求.

解:(1)∵四邊形APCB內(nèi)接于圓O,
∴∠FPC=B
又∵∠B=ACE=90°-BCE,∠ACE=APD,
∴∠APD=FPC,∠APD+DPC=FPC+DPC,即∠APC=FPD,
又∵∠PAC=PDC,
∴△PAC∽△PDF;
2)如圖1,連接PO,

則由 ,,有POAB,且∠PAB=45°,APO、AEF都為等腰直角三角形.在RtABC中,
AC=2BC,
AB2=BC2+AC2=5BC2,
AB=5,
BC=
AC=2,
CE=ACsinBAC=AC=2=2,
AE=ACcosBAC=AC=2=4
∵△AEF為等腰直角三角形,
EF=AE=4
FD=FC+CD=EF-CE+2CE=EF+CE=4+2=6
∵△APO為等腰直角三角形,AO=AB=,
AP=
∵△PDF∽△PAC,
=,
=
PD=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知、,By軸上的動點,以AB為邊構造,使點Cx軸上,BC的中點,則PM的最小值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=4,A=60°,若邊AC的垂直平分線DEAB于點D,連接CD,則△BDC的周長為( 。

A. 8 B. 9 C. 5+ D. 5+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點F是邊BC的中點,連接AF并延長交DC的延長線于點E,連接AC、BE.

(1)求證:AB=CE;

(2)若,則四邊形ABEC是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAC與∠CBE的平分線相交于點PBEBC,PBCE交于點H,PGADBCF,交ABG,下列結論:GAGP;SPACSPABACAB;BP垂直平分CE;FPFC;其中正確的判斷有(  )

A. 只有①②B. 只有③④C. 只有①③④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ymx﹣1交y軸于點B,交x軸于點C,以BC為邊的正方形ABCD的頂點A(﹣1,a)在雙曲線y=﹣x<0)上,D點在雙曲線yx>0)上,則k的值為( 。

A. 6 B. 5 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是小明制作的一副弓箭,點A,D分別是弓臂BAC與弓弦BC的中點,弓弦BC=60cm.沿AD方向拉動弓弦的過程中,假設弓臂BAC始終保持圓弧形,弓弦不伸長.如圖2,當弓箭從自然狀態(tài)的點D拉到點D1時,有AD1=30cm,∠B1D1C1=120°.

(1)圖2中,弓臂兩端B1,C1的距離為______cm.

(2)如圖3,將弓箭繼續(xù)拉到點D2,使弓臂B2AC2為半圓,則D1D2的長為____cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關于的分式方程有負分數(shù)解,且關于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )

A. B. 0 C. 3 D. 9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了慶祝五四青年節(jié),我市某中學舉行了書法比賽,賽后隨機抽查部分參賽同學成績(滿分為100分),并制作成圖表如下

分數(shù)段

頻數(shù)

頻率

60≤x70

30

0.15

70≤x80

m

0.45

80≤x90

60

n

90≤x≤100

20

0.1

請根據(jù)以上圖表提供的信息,解答下列問題:

1)這次隨機抽查了   名學生;表中的數(shù)m   ,n   

2)請在圖中補全頻數(shù)分布直方圖;

3)若繪制扇形統(tǒng)計圖,分數(shù)段60≤x70所對應扇形的圓心角的度數(shù)是   ;

4)全校共有600名學生參加比賽,估計該校成績不低于80分的學生有多少人?

查看答案和解析>>

同步練習冊答案