【題目】下列數(shù)據(jù)是甲、乙、丙三人各10輪投籃的得分(每輪投籃10次,每次投中記1分):
丙得分的平均數(shù)與眾數(shù)都是7,得分統(tǒng)計(jì)表如下:
測(cè)試序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
得分 | 7 | 6 | 8 | a | 7 | 5 | 8 | b | 8 | 7 |
(1)丙得分表中的a= ,b= ;
(2)若在他們?nèi)酥羞x擇一位投籃得分高且較為穩(wěn)定的投手作為主力,你認(rèn)為選誰更合適?請(qǐng)用你所學(xué)過的統(tǒng)計(jì)知識(shí)加以分析說明(參考數(shù)據(jù):,,);
(3)甲、乙、丙三人互相之間進(jìn)行傳球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球最先從乙手中傳出,經(jīng)過三次傳球后球又回到乙手中的概率是多少?(用樹狀圖或列表法解答)
【答案】(1)7,7;(2)選擇乙更合適,理由是:在平均數(shù)相同的情況下,選擇方差小的,因?yàn)榉讲钤叫,表示得分越穩(wěn)定;(3)經(jīng)過三次傳球后球又回到乙手中的概率為.
【解析】
(1)根據(jù)平均數(shù)的計(jì)算公式、眾數(shù)的定義即可得;
(2)先計(jì)算出甲、乙的平均數(shù),再利用平均數(shù)與方差的意義進(jìn)行決策即可;
(3)先畫出樹狀圖,再找出事件的所有可能的結(jié)果,然后找出經(jīng)過三次傳球后球又回到乙手中的結(jié)果,最后利用概率公式計(jì)算即可得.
(1)丙得分的眾數(shù)是7
a和b中至少有一個(gè)等于7
由平均數(shù)的公式得:
整理得:
則,
故答案為:7,7;
(2)由圖可知,甲10輪投籃的得分依次為
乙10輪投籃的得分依次為
則甲得分的平均數(shù)為
乙得分的平均數(shù)為
又因?yàn)?/span>,即
所以由平均數(shù)可知,應(yīng)該選擇乙、丙;由方差可知,選擇乙更合適,理由是方差越小,表示得分越穩(wěn)定
答:選擇乙更合適,理由是:在平均數(shù)相同的情況下,選擇方差小的,因?yàn)榉讲钤叫,表示得分越穩(wěn)定;
(3)依題意,畫樹狀圖如下:
由此可知,經(jīng)過三次傳球的所有可能的結(jié)果共有8種,它們每一種出現(xiàn)的可能性都相等,其中,經(jīng)過三次傳球后球又回到乙手中的結(jié)果有2種
則所求的概率為
答:經(jīng)過三次傳球后球又回到乙手中的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點(diǎn)C、D,若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)A,B的坐標(biāo)分別為(1,0),(0,2),AC⊥AB,且AB=AC,直線BC交軸于點(diǎn)D,拋物線經(jīng)過點(diǎn)A,B,D.
(1)求直線BC和拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是直線BD下方的拋物線上一點(diǎn),求△PCD面積的最大值,以及△PCD面積取得最大值時(shí),點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P的坐標(biāo)為(2)小題中,△PCD的面積取得最大值時(shí)對(duì)應(yīng)的坐標(biāo).平面內(nèi)存在直線l,使點(diǎn)B,D,P到該直線的距離都相等,請(qǐng)直接寫出所有滿足條件的直線l的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若順次連接四邊形ABCD各邊中點(diǎn)所得的四邊形是矩形,則下列結(jié)論中正確的是( )
A.AB∥CDB.AB⊥BCC.AC=BDD.AC⊥BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市在疫情期間購(gòu)進(jìn)一批含75%酒精的消毒濕巾投放市場(chǎng),則開始,由于消費(fèi)者對(duì)此類產(chǎn)品認(rèn)識(shí)不足,前幾天的銷量每況愈下;為了打開市場(chǎng),提高銷量,超市決定對(duì)該消毒濕巾打折銷售,日銷量每日增加,時(shí)間每增加1天,則日銷量增加20包.超市工作人員對(duì)一個(gè)月(30天)銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖像,圖中的折線ABC表示該消毒濕巾日銷量y(包)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系;
(1)第28天的日銷售量是_______包;
(2)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)若該產(chǎn)口進(jìn)價(jià)為5元/包,AB段售價(jià)為15元/包,BC段在15元/包的基礎(chǔ)上打a折銷售,并且在30天中利潤(rùn)不低于3400元的天數(shù)有且只有10天,試確定a的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間,則下列結(jié)論:①4a﹣2b+c>0;②3a+b>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有兩個(gè)互異實(shí)根.其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為了進(jìn)一步提高居民珍惜誰、保護(hù)水和水憂患意識(shí),提倡節(jié)約用水,從本社區(qū)5000戶家庭中隨機(jī)抽取100戶,調(diào)查他們家庭每季度的平均用水量,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖和表:
用戶季度用水量頻數(shù)分布表
平均用水量(噸) | 頻數(shù) | 頻率 |
3<x≤6 | 10 | 0.1 |
6<x≤9 | m | 0.2 |
9<x≤12 | 36 | 0.36 |
12<x≤15 | 25 | n |
15<x≤18 | 9 | 0.09 |
請(qǐng)根據(jù)上面的統(tǒng)計(jì)圖表,解答下列問題:
(1)在頻數(shù)分布表中:m=_______,n=________;
(2)根據(jù)題中數(shù)據(jù)補(bǔ)全頻數(shù)直方圖;
(3)如果自來水公司將基本季度水量定為每戶每季度9噸,不超過基本季度用水量的部分享受基本價(jià)格,超出基本季度用水量的部分實(shí)行加價(jià)收費(fèi),那么該社區(qū)用戶中約有多少戶家庭能夠全部享受基本價(jià)格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤做游戲(每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)動(dòng)甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請(qǐng)用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+b與x軸交于點(diǎn)A(5,0),與y軸交于點(diǎn)B;直線y═x+6過點(diǎn)B和點(diǎn)C,且AC⊥x軸.點(diǎn)M從點(diǎn)B出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度沿y軸向點(diǎn)O運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)A出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度沿射線AC向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)M到達(dá)點(diǎn)O時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒),連接MN.
(1)求直線y=kx+b的函數(shù)表達(dá)式及點(diǎn)C的坐標(biāo);
(2)當(dāng)MN∥x軸時(shí),求t的值;
(3)MN與AB交于點(diǎn)D,連接CD,在點(diǎn)M、N運(yùn)動(dòng)過程中,線段CD的長(zhǎng)度是否變化?如果變化,請(qǐng)直接寫出線段CD長(zhǎng)度變化的范圍;如果不變化,請(qǐng)直接寫出線段CD的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com