【題目】在平面直角坐標系中, ABC三個頂點的位置如圖(每個小正方形的邊長均為1).

(1)請畫出ABC沿x軸向右平移3個單位長度,再沿y軸向下平移2個單位長度后的A′B′C′(其中A′、B′、C′分別是A、B、C的對應(yīng)點,不寫畫法)

(2)直接寫出A′、B′、C′三點的坐標:

A′(_____,______); B′(_____,______);

C′(_____,______).

(3)求ABC的面積.

【答案】(1)圖形見解析;(2)A′(0,1),B′(-1,-1),C′(4,-4);(3)6.5.

【解析】

(1)直接利用平移的性質(zhì)得出對應(yīng)點位置進而得出答案;
(2)利用平移的性質(zhì)得出對應(yīng)點坐標;
(3)利用△ABC所在矩形面積減去周圍三角形面積進而得出答案.

解:(1)如圖所示:△A'B'C′即為所求;

(2)A′(0,1),B′(-1,-1),C′(4,-4);

(3)S△ABC=5×5-×1×2-×4×5-×3×5=6.5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】雷達二維平面定位的主要原理是:測量目標的兩個信息距離和角度,目標的表示方法為,其中,m表示目標與探測器的距離;表示以正東為始邊,逆時針旋轉(zhuǎn)后的角度.如圖,雷達探測器顯示在點A,B,C處有目標出現(xiàn),其中,目標A的位置表示為,目標C的位置表示為.用這種方法表示目標B的位置,正確的是(

A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不等式組 中,不等式①和②的解集在數(shù)軸上表示正確的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:|1﹣ |+2cos45°﹣ +( 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應(yīng)珠海環(huán)保城市建設(shè),我市某污水處理公司不斷改進污水處理設(shè)備,新設(shè)備每小時處理污水量是原系統(tǒng)的1.5倍,原來處理1200m3污水所用的時間比現(xiàn)在多用10小時.

(1)原來每小時處理污水量是多少m2

(2)若用新設(shè)備處理污水960m3,需要多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD,OF平分∠COE.

(1)若∠AOC=76°,求∠BOF的度數(shù);

(2)若∠BOF=36°,求∠AOC的度數(shù);

(3)若|∠AOC﹣BOF|=α°,請直接寫出∠AOC和∠BOF的度數(shù).(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,E為AB延長線上的點,作OD∥BC交EC的延長線于點D,連接AD.
(1)求證:AD=CD;
(2)若DE是⊙O的切線,CD=3,CE=2,求tanE和cos∠ABC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,A(-2,0),B(0,6),C(6,0),∠ABC+∠ADC=180°,BC⊥CD.

(1)求證:∠ABO=∠CAD;

(2)求四邊形ABCD的面積;

(3)如圖2,E為∠BCO的鄰補角的平分線上的一點,且∠BEO=45°,OE交BC于點F,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】長陽公園有四棵古樹A,B,C,D (單位:米).

(1)請寫出A,B,C,D四點的坐標;

(2)為了更好地保護古樹,公園決定將如圖所示的四邊形EFGH用圍欄圈起來,劃為保護區(qū),請你計算保護區(qū)的面積.

查看答案和解析>>

同步練習冊答案