【題目】某校數(shù)學(xué)興趣小組的成員小華對本班上學(xué)期期末考試數(shù)學(xué)成績(成績?nèi)≌麛?shù),滿分為100分)作了統(tǒng)計分析,繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖.
請你根據(jù)圖表提供的信息,解答下列問題:
(1)頻數(shù)分布表中a= ,b= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)數(shù)學(xué)老師準(zhǔn)備從不低于90分的學(xué)生中選1人介紹學(xué)習(xí)經(jīng)驗,那么取得了93分的小華被選上的概率是 .
【答案】(1)a=8,b=0.08;
(2)畫圖見解析
(3小華被選上的概率是.
【解析】
試題(1)根據(jù)頻數(shù)分布圖中每一組內(nèi)的頻數(shù)總和等于總數(shù)據(jù)個數(shù),得到總?cè)藬?shù),再計算故a的值;根據(jù)頻率=頻數(shù)÷數(shù)據(jù)總數(shù)計算b的值;
(2)據(jù)(1)補(bǔ)全直方圖;
(3)不低于90分的學(xué)生中共4人,小華是其中一個,故小華被選上的概率是:.
試題解析:(1)根據(jù)頻數(shù)分布圖中每一組內(nèi)的頻數(shù)總和等于總數(shù)據(jù)個數(shù),且知總?cè)藬?shù)為50人,
故a=50﹣2﹣20﹣16﹣4=8,
根據(jù)頻數(shù)與頻率的關(guān)系可得:b==0.08;
(2)如圖:
(3)小華得了93分,不低于90分的學(xué)生中共4人,
故小華被選上的概率是:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點C,使AC=AB;
②作∠ABM 的角平分線交AC于D點;
③在射線CM上作一點E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關(guān)系,并證明之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題
北京時間2015年7月31日,國際奧委會主席巴赫宣布:中國北京獲得2022年第24界冬季奧林匹克運動會舉辦權(quán),近期,新建北京至張家口鐵路可行性研究報告已經(jīng)獲得國家發(fā)改委批復(fù),鐵路全長約180千米,按照設(shè)計,京張高鐵列車的平均行駛速度是普通快車的1.5倍,用時比普通快車用時少了20分鐘,求京張高鐵列車的平均行駛速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程組解應(yīng)用題:打折前,買 10 件 A 商品和 5 件 B 商品共用了 400 元,買 5 件 A 商品和 10件 B 商品共用了 350 元.
(1)求打折前 A 商品、B 商品每件分別多少錢?
(2)打折后,買 100 件 A 商品和 100 件 B 商品共用了 3800 元.比不打折少花多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在日常生活中,如取款、上網(wǎng)等都需要密碼.有一種用“因式分解”法產(chǎn)生的密碼,方便記憶.原理是:如對于多項式x4-y4,因式分解的結(jié)果是(x-y)(x+y)·(x2+y2),若取x=9,y=9時,則各個因式的值是:(x-y)=0,(x+y)=18,x2+y2=162,于是就可以把“018162”作為一個六位數(shù)的密碼.對于多項式4x3-xy2,取x=10,y=10時,用上述方法產(chǎn)生的密碼共有多少種?請你分別寫出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,點A的坐標(biāo)為(1,1),OA=AC,∠OAC=90°,點D為x軸上一動點.以AD為邊在AD的右側(cè)作正方形ADEF.
(1)當(dāng)點D在線段OC上時(不與點O、C重合),則線段CF與OD之間的數(shù)量關(guān)系為 ;位置關(guān)系為 ,
(2)當(dāng)點D在線段OC的延長線上時,(1)中的結(jié)論是否成立?若成立,請說明理由;若不成立,請舉一反例;
(3)設(shè)D點坐標(biāo)為(t,0),當(dāng)D點從O點運動到C點時,用含t的代數(shù)式表示E點坐標(biāo),并直接寫出E點所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠2.
(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,OABC的邊OC在x軸的正半軸上,OC=5,反比例函數(shù)y= (x>0)的圖象經(jīng)過點A(1,4).
(1)求反比例函數(shù)的關(guān)系式和點B的坐標(biāo);
(2)如圖2,過BC的中點D作DP∥x軸交反比例函數(shù)圖象于點P,連接AP、OP.
①求△AOP的面積;
②在OABC的邊上是否存在點M,使得△POM是以PO為斜邊的直角三角形?若存在,請求出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點E,K分別在邊BC,AB上,點G在BA的延長線上,且CE=BK=AG.
(1)求證:①DE=DG; ②DE⊥DG;
(2)尺規(guī)作圖:以線段DE,DG為邊作出正方形DEFG(要求:只保留作圖痕跡,不寫作法和證明);
(3)連接(2)中的KF,猜想并寫出四邊形CEFK是怎樣的特殊四邊形,并證明你的猜想;
(4)當(dāng)=時,請直接寫出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com