如圖,矩形ABCD的兩條對角線相交于點(diǎn)O,∠AOB=60°,AB=2,則矩形的對角線AC的長是( 。
A.2B.4C.2
3
D.4
3

因?yàn)樵诰匦蜛BCD中,所以AO=
1
2
AC=
1
2
BD=BO,
又因?yàn)椤螦OB=60°,所以△AOB是等邊三角形,所以AO=AB=2,
所以AC=2AO=4.
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知矩形ABCD中,AB=4cm,AD=10cm,點(diǎn)P在邊BC上移動,點(diǎn)E、F、G、H分別是AB、AP、DP、DC的中點(diǎn).
(1)求證:EF+GH=5cm;
(2)求當(dāng)∠APD=90°時,
EF
GH
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知矩形ABCD的對角線交于點(diǎn)O,AC=
2
AB,則BD:BC的值為( 。
A.
2
2
B.
2
C.
2
4
D.2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

四邊形ABCD為矩形,已知點(diǎn)A(1,1),B(3,1),C(3,5),那么D點(diǎn)坐標(biāo)為( 。
A.(1,3)B.(1,5)C.(5,3)D.(5,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖所示,以△ABC的三邊為邊,在BC的同側(cè)分別作等邊△ABD、△BCE、△ACF.
(1)你認(rèn)為四邊形ADEF是什么四邊形?寫出你的猜想并說明理由.
(2)當(dāng)△ABC滿足什么條件時,四邊形ADEF成為矩形?(寫出條件,不要求證明)
(3)當(dāng)△ABC滿足什么條件時,四邊形ADEF成為菱形?(寫出條件,不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:矩形ABCD中,AB=1,點(diǎn)M在對角線AC上,直線l過點(diǎn)M且與AC垂直,與AD相交于點(diǎn)E.
(1)如果直線l與邊BC相交于點(diǎn)H(如圖1)AM=
1
3
AC且AD=a,求的AE長(用含a的代數(shù)式表示);
(2)在(1)中,直線l把矩形分成兩部分的面積比為2:5,求a的值;
(3)若AM=
1
4
AC,且直線l經(jīng)過點(diǎn)B(如圖2),求AD的長;
(4)如果直線l分別與邊AD,AB相交于點(diǎn)E,F(xiàn),AM=
1
4
AC,設(shè)AD的長為x,△AEF的面積為y,求y與x的函數(shù)關(guān)系式,并指出x的取值范圍(求x的取值范圍可不寫過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在梯形ABCD中,ABCD,∠ABC=90°,AB=5,BC=10,tan∠ADC=2.
(1)求DC的長;
(2)E為梯形內(nèi)一點(diǎn),F(xiàn)為梯形外一點(diǎn),若BF=DE,∠FBC=∠CDE,試判斷△ECF的形狀,并說明理由.
(3)在(2)的條件下,若BE⊥EC,BE:EC=4:3,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)M是矩形ABCD的邊AD的中點(diǎn),點(diǎn)P是BC邊上一動點(diǎn),PE⊥MC,PF⊥BM,垂足為E、F.
(1)當(dāng)矩形ABCD的長與寬滿足什么條件時,四邊形PEMF為矩形?猜想并證明你的結(jié)論.
(2)在(1)中,當(dāng)點(diǎn)P運(yùn)動到什么位置時,矩形PEMF變?yōu)檎叫,為什么?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,已知點(diǎn)B的坐標(biāo)為(-3,-2),則矩形OABC的面積為______.(平方單位)

查看答案和解析>>

同步練習(xí)冊答案