【題目】如圖,已知O的直徑為10,銳角ABC內接于⊙O,BD⊥AC于點D,AB=8,則tanCBD的值等于( 。

A. B. C. D.

【答案】D

【解析】

B作⊙O的直徑BM,連接AM;由圓周角定理可得:①∠C=AMB,②∠MAB=CDB=90°;由上述兩個條件可知:∠CBD和∠MBA同為等角的余角,所以這兩角相等,求出∠MBA的正切值即可;過AAB的垂線,設垂足為E,由垂徑定理易求得BE的長,即可根據(jù)勾股定理求得OE的長,已知∠MBA的對邊和鄰邊,即可求得其正切值,由此得解.

B作⊙O的直徑BM,連接AM,

則有:∠MAB=CDB=90°,M=C,

∴∠MBA=CBD,

OOEABE,

RtOEB中,BE=AB=4,OB=5,

由勾股定理,得:OE=3,

tanMBA=,

因此tanCBD=tanMBA=.

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的對稱軸為直線,與軸的一個交點為,且,下列結論:①;;.其中正確結論的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°

1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);

2)連接BD,求證:BD平分∠CBA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究:如圖①,△ABC是等邊三角形,在邊ABBC的延長線上截取BM=CN,連結MCAN,延長MCAN于點P

1)求證:△ACN≌△CBM

2)∠CPN= °;(給出求解過程)

3)應用:將圖①的△ABC分別改為正方形ABCD和正五邊形ABCDE,如圖②、③,在邊AB、BC的延長線上截取BM=CN,連結MC、DN,延長MCDN于點P,則圖②中∠CPN= °;(直接寫出答案)

4)圖③中∠CPN= °;(直接寫出答案)

5)拓展:若將圖①的△ABC改為正n邊形,其它條件不變,則∠CPN= °(用含n的代數(shù)式表示,直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標是(﹣2,3),點B的坐標是(1,﹣1),連接AB,點C是坐標軸上任意一點,則使ABC為等腰三角形的點C共有_____個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家八縱八橫高鐵網(wǎng)絡規(guī)劃中京昆通道的重要組成部分──西成高鐵于2017126日開通運營,西安至成都列車運行時間由14小時縮短為3.5小時.張明和王強相約從成都坐高鐵到西安旅游.如圖,張明家(記作A)在成都東站(記作B)南偏西30°的方向且相距4000米,王強家(記作C)在成都東站南偏東60°的方向且相距3000米,則張明家與王強家的距離為(  )

A. 6000 B. 5000 C. 4000 D. 2000

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①、圖②均是5×6的正方形網(wǎng)格,每個小正方形的頂點稱為格點,小正方形的邊長為1,點AE、F均在格點上.在圖①、圖②中,只用無刻度的直尺,在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點均在格點上,不要求寫出畫法.

1)在圖①中畫一個正方形ABCD,使其面積為5

2)在圖②中畫一個等腰△EFG,使EF為其底邊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=﹣1,與x軸的一個交點是A(﹣3,0)其圖象的一部分如圖所示,對于下列說法:①2a=b;②abc>0,③若點B(﹣2,y1),C(﹣,y2)是圖象上兩點,則y1<y2;④圖象與x軸的另一個交點的坐標為(1,0).其中正確的是_____(把正確說法的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD//BC,EBC的延長線,聯(lián)結AE分別交BD、CD于點G、F,且

1)求證:AB//CD;

2)若,BG=GE,求證:四邊形ABCD是菱形.

查看答案和解析>>

同步練習冊答案