【題目】某電子品牌商下設臺式電腦部、平板電腦部、手機部等.2018年的前五個月該品牌全部商品銷售額共計600萬元.下表表示該品牌商2018年前五個月的月銷售額(統(tǒng)計信息不全).圖1表示該品牌手機部各月銷售額占該品牌所有商品當月銷售額的百分比情況統(tǒng)計圖.
品牌月銷售額統(tǒng)計表(單位:萬元)
月份 | 1月 | 2月 | 3月 | 4月 | 5月 |
品牌月銷售額 | 180 | 90 | 115 | 95 |
()該品牌5月份的銷售額是 萬元;
()手機部5月份的銷售額是 萬元;
小明同學觀察圖1后認為,手機部5月份的銷售額比手機部4月份的銷售額減少了,你同意他的看法嗎?請說明理由;
()該品牌手機部有A、B、C、D、E五個機型,圖2表示在5月份手機部各機型銷售額占5月份手機部銷售額的百分比情況統(tǒng)計圖.則5月份 機型的銷售額最高,銷售額最高的機型占5月份該品牌銷售額的百分比是 .
【答案】(1)120;(2)36.小明說法錯誤,理由見解析;(3)B,8.4%.
【解析】
(1)由已知的前5月的銷售總額為600萬元,結合統(tǒng)計表中所給的前4個月的銷售額即可求得5月份的銷售額;
(2)由(1)中所得5月份的銷售額和已知條件計算出4、5兩月手機部的銷售額即可得到所求答案;
(3)由扇形統(tǒng)計圖中的信息可知,5月份手機部銷售的手機中B型手機的銷售額最高,由(2)中所得5月份手機部的銷售額結合扇形統(tǒng)計圖中的信息可計算出5月份B型手機的銷售額,這樣結合(1)中所得5月份該品牌的銷售總額即可計算出5月份B型手機的銷售額占5月份該品牌銷售總額的百分比.
(1)由題意可得:
該品牌5月份的銷售額為:600-180-90-115-95=120(萬元);
(2)由題意可得:
手機部5月份的銷售額為:120×30%=36(萬元);
不同意小明的看法,理由如下:
由題意可得:手機部4月份銷售額為:95×32%=30.4(萬元),手機部5月份銷售額為:120×30%=36(萬元),
∵36萬元>30.4萬元,
∴小明的說法錯誤;
(3)由扇形統(tǒng)計圖可知,5月份手機部銷售的手機中B型手機的銷售額最高;
由(2)可知5月份手機部銷售手機的總金額為36萬元,其中B型手機占28%,
∴5月份手機部銷售B型手機的金額為:36×28%=10.08(萬元),
又∵5月份該品牌產品的銷售總額為120萬元,
∴5月份B型手機的銷售額占該月銷售總額的百分比為:10.08÷120×100%=8.4%.
科目:初中數學 來源: 題型:
【題目】某市公交公司為應對春運期間的人流高峰,計劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,
(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?
(2)若該公司預計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是若干個粗細均勻的鐵環(huán)最大限度的拉伸組成的鏈條,已知鐵環(huán)粗0.5厘米,每個鐵環(huán)長4.6厘米,設鐵環(huán)間處于最大限度的拉伸狀態(tài)
(1)填表:
鐵環(huán)個數 | 1 | 2 | 3 | 4 |
鏈條長(cm) | 4.6 | 8.2 | _____ | ____ |
(2)設n個鐵環(huán)長為y厘米,請用含n的式子表示y;
(3)若要組成2.17米長的鏈條,至少需要多少個鐵環(huán)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BD=2AB,AC與BD相交于點O,點E、F、G分別是OC、OB、AD的中點.
求證:(1)DE⊥OC;
(2)EG=EF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉得到的.連接BE、CF相交于點D.
(1)求證:BE=CF.
(2)當四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在三角形ABC中,點D在線段AB上,DE∥BC交AC于點E,點F在直線BC上,作直線EF,過點D作直線DH∥AC交直線EF于點H.
(1)在如圖1所示的情況下,求證:∠HDE=∠C;
(2)若三角形ABC不變,D,E兩點的位置也不變,點F在直線BC上運動.
①當點H在三角形ABC內部時,直接寫出∠DHF與∠FEC的數量關系;
②當點H在三角形ABC外部時,①中結論是否依然成立?請在圖2中畫圖探究,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與線段AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠AOF的度數是( )
A.105° B.110° C.115° D.120°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△BAD中,AC與BD相交于點E,已知AD=BC,另外只能從下面給出的三個條件:①∠DAB=∠CBA;②∠D=∠C;③∠DBA=∠CAB中選擇其中的一個用來證明△ABC和△BAD全等,這個條件是 (填序號),并證明△ABC≌△BAD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com