【題目】某校為研究學(xué)生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運動、娛樂、上網(wǎng)等四個方面調(diào)查了若干學(xué)生的興趣愛好;并將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

1)在這次研究中,一共調(diào)查了___________名學(xué)生;若該校共有1500名學(xué)生,估計全校愛好運動的學(xué)生共有___________名;

2)補全條形統(tǒng)計圖,并計算閱讀部分圓心角是多少度;

3)若該校九年級愛好閱讀的學(xué)生有150人,估計九年級有多少學(xué)生?

【答案】1100;600;(2)補圖見解析;閱讀部分圓心角是;(3)估計九年級有500名學(xué)生.

【解析】

1)根據(jù)娛樂的人數(shù)以及百分比求出總?cè)藬?shù)即可.
2)求出閱讀的人數(shù),畫出條形圖即可,利用360°×百分比取圓心角.
3)根據(jù)總?cè)藬?shù),個體,百分比之間的關(guān)系解決問題即可.

解:(1)總?cè)藬?shù)=20÷20%=100(名),
若該校共有1500名學(xué)生,估計全校愛好運動的學(xué)生有1500×=600(名).
故答案為100,600.

2)愛好閱讀人數(shù)為:人,

補全條形統(tǒng)計圖,如圖所示,

閱讀部分圓心角是,

3)愛好閱讀的學(xué)生人數(shù)所占的百分比

;

所以估計九年級有500名學(xué)生.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,先有一張矩形紙片分別在矩形的邊上,將矩形紙片沿直線MN折疊,使點落在矩形的邊上,記為點,點落在處,連接,交于點,連接.下列結(jié)論:

②四邊形是菱形;

重合時,;

的面積的取值范圍是

其中正確的是_____(把正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載,如圖①,以直角三角形的各邊為邊向外作等邊三角形,再把較小的兩個等邊三角形按如圖②的方式放置在最大等邊三角形內(nèi).若知道圖②中陰影部分的面積,則一定能求出圖②中(

A.最大等邊三角形與直角三角形面積的和B.最大等邊三角形的面積

C.較小兩個等邊三角形重疊部分的面積D.直角三角形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:(1)如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成一個“回形”正方形(如圖2),請你寫出、、ab之間的等量關(guān)系是______________;

2)兩個邊長分別為ab的正方形如圖放置(圖3),求出圖3中陰影部分的面積;

3)若,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,DBC的中點,連接AD,EAD的中點,過AAFBCBE延長線于F,連接CF

1)求證:四邊形ADCF是菱形;

2)在不添加任何輔助線的情況下,請直接寫出與ACD面積相等的三角形(不包含ACD).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L: 常數(shù)t0x軸從左到右的交點為B,A,過線段OA的中點MMPx軸,交雙曲線于點P,且OA·MP=12.

1k值;

2當(dāng)t=1時,求AB長,并求直線MPL對稱軸之間的距離;

3L在直線MP左側(cè)部分的圖象含與直線MP的交點記為G,用t表示圖象G最高點的坐標(biāo);

4設(shè)L與雙曲線有個交點的橫坐標(biāo)為x0,且滿足4x06,通過L位置隨t變化的過程,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個幾何體的俯視圖,則這個幾何體的形狀可能是( 。

A.B.[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/21/2489183741517824/2490750925307904/STEM/789274b5f2a548a49af6fc88629e8cdc.png] C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC中,ABAC

(1)用尺規(guī)作出圓心在直線BC上,且過A、C兩點的⊙O;(注:保留作圖痕跡,標(biāo)出點O,并寫出作法

(2)若∠B=30°,求證:AB與(1)中所作⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點,直線AC:y=-x-6y軸與點C.E是直線AB上的動點,過點EEFx軸交AC于點F,交拋物線于點G.

(1)求拋物線y=-x2+bx+c的表達(dá)式;

(2)連接GB、EO,當(dāng)四邊形GEOB是平行四邊形時,求點G的坐標(biāo);

(3)①在y軸上存在一點H,連接EH、HF,當(dāng)點E運動到什么位置時,以A、E、F、H為頂點的四邊形是矩形?求出此時點E、H的坐標(biāo);

②在①的前提下,以點E為圓心,EH長為半徑作圓,點M為⊙E上一動點,求AM+CM的最小值.

查看答案和解析>>

同步練習(xí)冊答案