【題目】綜合題
(1)探究:如圖1 ,直線l與坐標(biāo)軸的正半軸分別交于A,B兩點(diǎn),與反比例函數(shù) 的圖象交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),過(guò)點(diǎn)C作CE⊥y軸于點(diǎn)E,過(guò)點(diǎn)D作DF⊥x軸于點(diǎn)F,CE與DF交于點(diǎn)G(ab).

①若 ,請(qǐng)用含n的代數(shù)式表示
②求證: ;
(2)應(yīng)用:如圖2,直線l與坐標(biāo)軸的正半軸分別交于點(diǎn)A,B兩點(diǎn),與反比例函數(shù) 的圖象交于點(diǎn)C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),已知 ,△OBD的面積為1,試用含m的代數(shù)式表示k.

【答案】
(1)

①∵CE⊥y軸,DF⊥x軸,

∴∠AEC=∠DFB=90°,

又∵∠ACE=∠DCG,

∴△ACE∽△DCG

②證明:易證△ACE∽△DCG∽△DBF

又∵G(a,b)

C( ) ,D(a, )

即△ACE與△DBF都和△DCG相似,且相似比都為

∴△ACE≌△DBF

AC=BD.


(2)

如圖,過(guò)點(diǎn)DDHx軸于點(diǎn)H

由(2)可得AC=BD

又∵

.


【解析】(1)①由直角相等,對(duì)頂角相等,可證明△ACE∽△DCG , ;②由①同理可證明△ACE∽△DCG∽△DBF , 通過(guò)證明△ACE∽△DCG相似比與△DBF∽△DCG相似比相等,則可證得△ACE≌△DBFAC=BD;(2)過(guò)點(diǎn)DDHx軸于點(diǎn)H , 則DH//OA,所以有 , ,根據(jù)反比例函數(shù)k的幾何意義可得 ,
則可寫出 ,代入比可解得.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解反比例函數(shù)的圖象的相關(guān)知識(shí),掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形.有兩條對(duì)稱軸:直線y=x和 y=-x.對(duì)稱中心是:原點(diǎn),以及對(duì)反比例函數(shù)的性質(zhì)的理解,了解性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減。 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,拋物線y=ax2+2ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式;
(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料,然后解答問(wèn)題:
在平面直角坐標(biāo)系中,以任意兩點(diǎn)P(x1 , y1),Q(x2 , y2)為端點(diǎn)的線段的中點(diǎn)坐標(biāo)為( , ).如圖,在平面直角坐標(biāo)系xOy中,雙曲線y= (x<0)和y= (x>0)的圖象關(guān)于y軸對(duì)稱,直線y= + 與兩個(gè)圖象分別交于A(a,1),B(1,b)兩點(diǎn),點(diǎn)C為線段AB的中點(diǎn),連接OC、OB.

(1)求a、b、k的值及點(diǎn)C的坐標(biāo);
(2)若在坐標(biāo)平面上有一點(diǎn)D,使得以O(shè)、C、B、D為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某課題小組為了解某品牌手機(jī)的銷售情況,對(duì)某專賣店該品牌手機(jī)在今年1~4月的銷售做了統(tǒng)計(jì),并繪制成如圖兩幅統(tǒng)計(jì)圖(如圖).

(1)該專賣店1~4月共銷售這種品牌的手機(jī)臺(tái);
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,“二月”所在的扇形的圓心角的度數(shù)是;
(4)在今年1~4月份中,該專賣店售出該品牌手機(jī)的數(shù)量的中位數(shù)是臺(tái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一張寬為6cm的平行四邊形紙帶ABCD如圖1所示,AB=10cm,小
明用這張紙帶將底面周長(zhǎng)為10cm直三棱柱紙盒的側(cè)面進(jìn)行包貼(要求包
貼時(shí)沒(méi)有重疊部分). 小明通過(guò)操作后發(fā)現(xiàn)此類包貼問(wèn)題可將直三棱柱的
側(cè)面展開(kāi)進(jìn)行分析.


(1)若紙帶在側(cè)面纏繞三圈,正好將這個(gè)直三棱柱紙盒的側(cè)面全部包貼滿.則紙帶AD的長(zhǎng)度為 cm;
(2)若AD=100cm,紙帶在側(cè)面纏繞多圈,正好將這個(gè)直三棱柱紙盒的側(cè)面全部包貼滿.則這個(gè)直三棱柱紙盒的高度是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測(cè)得教學(xué)樓頂總D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.
(結(jié)果精確到0.1m。參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)

(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,點(diǎn)D在邊AC上,AD=5,DE⊥BC于點(diǎn)E,連結(jié)AE,則△ABE的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題
(1)如圖1,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點(diǎn),G是AD上一點(diǎn),如果∠GCE=45°,請(qǐng)你利用(1)的結(jié)論證明:GE=BE+GD.
(3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題: 如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點(diǎn),且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y= (n為常數(shù)且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=6.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求兩函數(shù)圖象的另一個(gè)交點(diǎn)坐標(biāo);
(3)直接寫出不等式;kx+b≤ 的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案