【題目】某玩具專柜要經(jīng)營一種新上市的兒童玩具,進(jìn)價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件.

(1)寫出專柜銷售這種玩具,每天所得的銷售利潤W(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;

(2)求銷售單價為多少元時,該玩具每天的銷售利潤最大;

(3)專柜結(jié)合上述情況,設(shè)計了AB兩種營銷方案:

方案A:該玩具的銷售單價高于進(jìn)價且不超過30元;

方案B:每天銷售量不少于10件,且每件玩具的利潤至少為25元.

請比較哪種方案的最大利潤更高,并說明理由.

【答案】(1)w=-10x2+700x-10000;(2)35元;(3)選擇方案A,理由見解析

【解析】試題分析:(1)根據(jù)利潤=(銷售單價-進(jìn)價)×銷售量,列出函數(shù)關(guān)系式即可;

(2)根據(jù)(1)式列出的函數(shù)關(guān)系式,運(yùn)用配方法求最大值;

(3)分別求出方案A、B中x的取值范圍,然后分別求出A、B方案的最大利潤,然后進(jìn)行比較.

試題解析:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.

(2)w=-10x2+700x-10000=-10(x-35)2+2250.

所以,當(dāng)x=35時,w有最大值2250.

即銷售單價為35元時,該文具每天的銷售利潤最大.

(3)方案A:由題可得20<x≤30,

因為a=-10<0,對稱軸為x=35,

拋物線開口向下,在對稱軸左側(cè),wx的增大而增大,

所以,當(dāng)x=30時,w取最大值為2000元.

方案B:由題意得,解得: ,

在對稱軸右側(cè),wx的增大而減小,

所以,當(dāng)x=45時,w取最大值為1250元.

因為2000元>1250元,

所以選擇方案A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程x2+m22x150有一個根是x3,則m的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)中華民族傳統(tǒng)文化,某校舉辦了“古詩文大賽”,并為獲獎同學(xué)購買簽字筆和筆記本作為獎品.1支簽字筆和2個筆記本共8.5元,2支簽字筆和3個筆記本共13.5元.
(1)求簽字筆和筆記本的單價分別是多少元?
(2)為了激發(fā)學(xué)生的學(xué)習(xí)熱情,學(xué)校決定給每名獲獎同學(xué)再購買一本文學(xué)類且定價為15元的圖書.書店出臺如下促銷方案:購買圖書總數(shù)超過50本可以享受8折優(yōu)惠,學(xué)校如果多買12本,則可以享受優(yōu)惠且所花錢數(shù)與原來相同,問學(xué)校獲獎的同學(xué)有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)解方程組:
(2)用代入消元法解方程組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于同一平面內(nèi)的直線ab、c,如果ab平行,ca平行,那么cb的位置關(guān)系是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,P是菱形ABCD的對角線AC上一動點,過P垂直于AC的直線交菱形ABCD的邊于M、N兩點,設(shè)AC=2,BD=1,AP=x,△AMN的面積為y,則y關(guān)于x的函數(shù)圖象的大致形狀是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6個人用35天完成了某項工程的 ,如果再增加工作效率相同的8個人,那么完成這項工程,前后共用的天數(shù)是( )
A. 30
B.40
C.60
D.65

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線經(jīng)過點D6,1),點C是雙曲線第三象限分支上的動點,過CCAx軸,過DDBy軸,垂足分別為A,B,連接ABBC.

1)求k的值;

2)若BCD的面積為12,求直線CD的解析式;

3)判斷ABCD的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項式2ax4+5ax3-13x2-x4+2021+2x+bx3-bx4-13x3是二次多項式,則a2+b2=

查看答案和解析>>

同步練習(xí)冊答案