在某市開(kāi)展的環(huán)境創(chuàng)優(yōu)活動(dòng)中,某居民小區(qū)要在一塊靠墻(墻長(zhǎng)15米)的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍成,若設(shè)花園與墻平行的一邊長(zhǎng)為x(m),花園的面積為y(m2)。

(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(2)滿(mǎn)足條件的花園面積能達(dá)到200m2嗎?若能,求出此時(shí)x的值,若不能,說(shuō)明理由:

(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時(shí),花園的面積最大?最大面積是多少?

 

【答案】

(1)y=﹣x2+20x(0<x≤15);

(2)花園面積不能達(dá)到200m2,理由見(jiàn)解析;

(3)當(dāng)x=15時(shí),花園的面積最大,最大面積為187.5m2

【解析】

試題分析:(1)設(shè)花園靠墻的一邊長(zhǎng)為x(m),另一邊長(zhǎng)為,用面積公式表示矩形面積;

(2)就是已知y=200,解一元二次方程,但要注意檢驗(yàn)結(jié)果是否符合題意;即結(jié)果應(yīng)該是0<x≤15.

(3)由于0<x≤15,對(duì)稱(chēng)軸x=20,即頂點(diǎn)不在范圍內(nèi),y隨x的增大而增大.∴x=15時(shí),y有最大值.

試題解析:(1)根據(jù)題意得:

即y=﹣x2+20x(0<x≤15);

(2)當(dāng)y=200時(shí),即﹣x2+20x=200,

解得x1=x2=20>15,

∴花園面積不能達(dá)到200m2;

(3)∵y=﹣x2+20x的圖象是開(kāi)口向下的拋物線(xiàn),對(duì)稱(chēng)軸為x=20,

∴當(dāng)0<x≤15時(shí),y隨x的增大而增大.

∴x=15時(shí),y有最大值,

y最大值=﹣×152+20×15=187.5m2

即當(dāng)x=15時(shí),花園的面積最大,最大面積為187.5m2

考點(diǎn):二次函數(shù)的應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在某市開(kāi)展的環(huán)境創(chuàng)優(yōu)活動(dòng)中,某居民小區(qū)要在一塊靠墻(墻長(zhǎng)15米)的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍成,若設(shè)花園平行于墻的一邊長(zhǎng)為x(m),花園的面積為y(m2).
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)滿(mǎn)足條件的花園面積能達(dá)到200m2嗎?若能,求出此時(shí)x的值,若不能,說(shuō)明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時(shí),花園的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》?碱}集(19):2.6 何時(shí)獲得最大利潤(rùn)(解析版) 題型:解答題

在某市開(kāi)展的環(huán)境創(chuàng)優(yōu)活動(dòng)中,某居民小區(qū)要在一塊靠墻(墻長(zhǎng)15米)的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍成,若設(shè)花園靠墻的一邊長(zhǎng)為x(m),花園的面積為y(m2).
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)滿(mǎn)足條件的花園面積能達(dá)到200m2嗎?若能,求出此時(shí)x的值,若不能,說(shuō)明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時(shí),花園的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第34章《二次函數(shù)》?碱}集(20):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在某市開(kāi)展的環(huán)境創(chuàng)優(yōu)活動(dòng)中,某居民小區(qū)要在一塊靠墻(墻長(zhǎng)15米)的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍成,若設(shè)花園靠墻的一邊長(zhǎng)為x(m),花園的面積為y(m2).
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)滿(mǎn)足條件的花園面積能達(dá)到200m2嗎?若能,求出此時(shí)x的值,若不能,說(shuō)明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時(shí),花園的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第26章《二次函數(shù)》?碱}集(19):26.3 實(shí)際問(wèn)題與二次函數(shù)(解析版) 題型:解答題

在某市開(kāi)展的環(huán)境創(chuàng)優(yōu)活動(dòng)中,某居民小區(qū)要在一塊靠墻(墻長(zhǎng)15米)的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍成,若設(shè)花園靠墻的一邊長(zhǎng)為x(m),花園的面積為y(m2).
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)滿(mǎn)足條件的花園面積能達(dá)到200m2嗎?若能,求出此時(shí)x的值,若不能,說(shuō)明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時(shí),花園的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省杭州市保俶塔實(shí)驗(yàn)學(xué)校九年級(jí)(上)第一次月考數(shù)學(xué)試卷(一)(解析版) 題型:解答題

在某市開(kāi)展的環(huán)境創(chuàng)優(yōu)活動(dòng)中,某居民小區(qū)要在一塊靠墻(墻長(zhǎng)15米)的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍成,若設(shè)花園靠墻的一邊長(zhǎng)為x(m),花園的面積為y(m2).
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)滿(mǎn)足條件的花園面積能達(dá)到200m2嗎?若能,求出此時(shí)x的值,若不能,說(shuō)明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時(shí),花園的面積最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案