已知:以原點(diǎn)O為圓心、5為半徑的半圓與y軸交于A、G兩點(diǎn),AB與半圓相切于點(diǎn)A,點(diǎn)B的坐標(biāo)為(3,yB)(如圖1);過半圓上的點(diǎn)C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于xC2
(1)求點(diǎn)C的坐標(biāo);
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設(shè)拋物線y=ax2+h過點(diǎn)P、Q,拋物線y=a1x2+h1過點(diǎn)P1、Q1,則h>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進(jìn)行驗(yàn)證;
②當(dāng)圖1中的線段BC在第一象限時(shí),作線段BC關(guān)于y軸對稱的線段FE,連接BF、CE,點(diǎn)T是線段BF上的動(dòng)點(diǎn)(如圖3);設(shè)K是過T、B、C三點(diǎn)的拋物線y=ax2+bx+c的頂點(diǎn),求K的縱坐標(biāo)yK的取值范圍.

【答案】分析:(1)已知了△DOC的面積,那么xc•|yc|=xc2,因此=,根據(jù)圓的半徑為5,根據(jù)勾股定理可得出C點(diǎn)橫坐標(biāo)的平方與縱坐標(biāo)的平方的和為25,據(jù)此可求出C點(diǎn)的坐標(biāo).
(2)①根據(jù)四點(diǎn)坐標(biāo)線求出兩拋物線的解析式,然后比較h,h1的值即可.
②本題考慮兩個(gè)極限值即可:
一:當(dāng)T運(yùn)動(dòng)到B點(diǎn)時(shí),T與K,B重合,B點(diǎn)為拋物線的頂點(diǎn),此時(shí)yK最小.
二:當(dāng)T運(yùn)動(dòng)到F點(diǎn)時(shí),T、F重合,此時(shí)過F、B、C的拋物線的yK值最大,由此可得出yK的取值范圍.
解答:解:(1)yB=5=半徑;xCyC=xC2,xC2+y2C=25,
得C(4,3)(2分)和C(4,-3)

(2)①過點(diǎn)P(4,3)、Q(3,5)的拋物線y=ax2+h
即為y=-x2+,得h=
過P1(p+1,3)、Q1(p,5)的拋物線y=a1x2+h1
為y=-•x2+
h1=
h-h1=-
==,
∵M(jìn)Q>M1Q1,其中MQ=6,
∴0≤p=M1Q1<3,可知0≤p<3;
∴7p+3>0,2p+1>0,3-p>0,
因而得到h-h1>0,證得h>h1
或者說明2p+1>0,-14p2+36p+18在0≤p<3時(shí)總是大于0,
得到h-h1>0.
②顯然拋物線y=ax2+bx+c的開口方向向下,a<0.
當(dāng)T運(yùn)動(dòng)到B點(diǎn)時(shí),這時(shí)B、T、K三點(diǎn)重合即B為拋物線的頂點(diǎn),∴yK≥5;
將過點(diǎn)T、B、C三點(diǎn)的拋物線y=ax2+bx+c沿x軸平移,使其對稱軸為y軸,這時(shí)yK不變.
則由上述①的結(jié)論,
當(dāng)T在FB上運(yùn)動(dòng)時(shí),過F(-3,5)、B(3,5)、C(4,3)三點(diǎn)的拋物線的頂點(diǎn)為最高點(diǎn),
∴yK,
∴5≤yK
點(diǎn)評:本題主要考查了勾股定理、坐標(biāo)與圖形性質(zhì)、等腰梯形的性質(zhì)以及二次函數(shù)的綜合應(yīng)用等知識(shí)點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:以原點(diǎn)O為圓心、5為半徑的半圓與y軸交于A、G兩點(diǎn),AB與半圓相切于點(diǎn)A,點(diǎn)B的坐標(biāo)為(3,yB)(如圖1);過半圓上的點(diǎn)C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于
38
xC2
(1)求點(diǎn)C的坐標(biāo);
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設(shè)拋物線y=a0x2+h0過點(diǎn)P、Q,拋物線y=a1x2+h1過點(diǎn)P1、Q1,則h0>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進(jìn)行驗(yàn)證;
②當(dāng)圖1中的線段BC在第一象限時(shí),作線段BC關(guān)于y軸對稱的線段FE,連接BF、CE,點(diǎn)T是線段BF上的動(dòng)點(diǎn)(如圖3);設(shè)K是過T、B、C三點(diǎn)的拋物線y=ax2+bx+c的頂點(diǎn),求K的縱坐標(biāo)yK的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(49):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:以原點(diǎn)O為圓心、5為半徑的半圓與y軸交于A、G兩點(diǎn),AB與半圓相切于點(diǎn)A,點(diǎn)B的坐標(biāo)為(3,yB)(如圖1);過半圓上的點(diǎn)C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于xC2
(1)求點(diǎn)C的坐標(biāo);
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設(shè)拋物線y=ax2+h過點(diǎn)P、Q,拋物線y=a1x2+h1過點(diǎn)P1、Q1,則h>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進(jìn)行驗(yàn)證;
②當(dāng)圖1中的線段BC在第一象限時(shí),作線段BC關(guān)于y軸對稱的線段FE,連接BF、CE,點(diǎn)T是線段BF上的動(dòng)點(diǎn)(如圖3);設(shè)K是過T、B、C三點(diǎn)的拋物線y=ax2+bx+c的頂點(diǎn),求K的縱坐標(biāo)yK的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙江省杭州市西湖區(qū)中考數(shù)學(xué)模擬試卷(七)(解析版) 題型:解答題

已知:以原點(diǎn)O為圓心、5為半徑的半圓與y軸交于A、G兩點(diǎn),AB與半圓相切于點(diǎn)A,點(diǎn)B的坐標(biāo)為(3,yB)(如圖1);過半圓上的點(diǎn)C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于xC2
(1)求點(diǎn)C的坐標(biāo);
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設(shè)拋物線y=ax2+h過點(diǎn)P、Q,拋物線y=a1x2+h1過點(diǎn)P1、Q1,則h>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進(jìn)行驗(yàn)證;
②當(dāng)圖1中的線段BC在第一象限時(shí),作線段BC關(guān)于y軸對稱的線段FE,連接BF、CE,點(diǎn)T是線段BF上的動(dòng)點(diǎn)(如圖3);設(shè)K是過T、B、C三點(diǎn)的拋物線y=ax2+bx+c的頂點(diǎn),求K的縱坐標(biāo)yK的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•宜昌)已知:以原點(diǎn)O為圓心、5為半徑的半圓與y軸交于A、G兩點(diǎn),AB與半圓相切于點(diǎn)A,點(diǎn)B的坐標(biāo)為(3,yB)(如圖1);過半圓上的點(diǎn)C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于xC2
(1)求點(diǎn)C的坐標(biāo);
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設(shè)拋物線y=ax2+h過點(diǎn)P、Q,拋物線y=a1x2+h1過點(diǎn)P1、Q1,則h>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進(jìn)行驗(yàn)證;
②當(dāng)圖1中的線段BC在第一象限時(shí),作線段BC關(guān)于y軸對稱的線段FE,連接BF、CE,點(diǎn)T是線段BF上的動(dòng)點(diǎn)(如圖3);設(shè)K是過T、B、C三點(diǎn)的拋物線y=ax2+bx+c的頂點(diǎn),求K的縱坐標(biāo)yK的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案