【題目】如圖,在數(shù)軸上點A表示的數(shù)為a,點B表示的數(shù)為b,且a,b滿足|a+2|+(3a+b)2=0,O為原點.

(1)則a= ,b= ;

(2)若動點P從點A出發(fā),以每秒1個單位長度的速度沿數(shù)軸向右勻速運動,

①當(dāng)PO=2PB時,求點P的運動時間t;

②當(dāng)點P運動到線段OB上時,分別取AP和OB的中點E、F,則的值為

(3)有一動點Q從原點O出發(fā)第一次向左運動1個單位長度,然后在新的位置第二次運動,向右運動2個單位長度,在此位置第三次運動,向左運動3個單位長度…按照如此規(guī)律不斷地左右運動,當(dāng)運動到2015次時,求點Q所對應(yīng)的有理數(shù).

【答案】(1)a=﹣2,b=6;(2)①點P的運動時間t為6或14秒;②2;(3)點Q所對應(yīng)的有理數(shù)的值為﹣1008.

【解析】

試題分析:(1)根據(jù)非負(fù)數(shù)的性質(zhì)即可求出a、b的值;

(2)①先表示出運動t秒后P點對應(yīng)的數(shù)為﹣2+t,再根據(jù)兩點間的距離公式得出PO=|﹣2+t|,PB=|﹣2+t﹣6|=|t﹣8|,利用PO=2PB建立方程,求解即可;

②根據(jù)中點坐標(biāo)公式分別表示出點E表示的數(shù),點F表示的數(shù),再計算即可;

(3)根據(jù)題意得到點P每一次運動后所在的位置,然后由有理數(shù)的加法進(jìn)行計算即可.

解:(1)|a+2|+(3a+b)2=0,

a+2=0,3a+b=0,

a=﹣2,b=6;

(2)①若動點P從點A出發(fā),以每秒1個單位長度的速度沿數(shù)軸向右勻速運動,

運動t秒后P點對應(yīng)的數(shù)為﹣2+t,

點A表示的數(shù)為﹣2,點B表示的數(shù)為6,

PO=|﹣2+t|,PB=|﹣2+t﹣6|=|t﹣8|,

當(dāng)PO=2PB時,有|﹣2+t|=2|t﹣8|,

解得t=6或14.

答:點P的運動時間t為6或14秒;

②當(dāng)點P運動到線段OB上時,

AP中點E表示的數(shù)是=,OB的中點F表示的數(shù)是3,

所以EF=3﹣=,

==2;

(3)依題意得:﹣1+2﹣3+4﹣5+6﹣7+…+2014﹣2015

=(﹣1+2)+(﹣3+4)+(﹣5+6))+…+(﹣2013+2014)﹣2015

=1007﹣2015

=﹣1008.

答:點Q所對應(yīng)的有理數(shù)的值為﹣1008.

故答案為﹣2,6;2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形OABC的邊長為2,頂點A,C分別在x軸,y軸的正半軸上,點E是BC的中點,F(xiàn)是AB延長線上一點且FB=1.

(1)求經(jīng)過點O,A,E三點的拋物線解析式;

(2)點P在拋物線上運動,當(dāng)點P運動到什么位置時△OAP的面積為2,請求出點P的坐標(biāo);

(3)在拋物線上是否存在一點Q,使△AFQ是等腰直角三角形?若存在直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家的“節(jié)能減排”政策,某廠家開發(fā)了一種新型的電動車,如圖,它的大燈A射出的光線AB、AC與地面MN的夾角分別為22°和31°,AT⊥MN,垂足為T,大燈照亮地面的寬度BC的長為m.

1)求BT的長(不考慮其他因素).

(2)一般正常人從發(fā)現(xiàn)危險到做出剎車動作的反應(yīng)時間是0.2s,從發(fā)現(xiàn)危險到電動車完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車,從做出剎車動作到電動車停止的剎車距離是,請判斷該車大燈的設(shè)計是否能滿足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計),并說明理由.

(參考數(shù)據(jù):sin22°,tan22°sin31°,tan31°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=3,AB=5,點O在BC邊的中線AD上,⊙O與BC相切于點E,且∠OBA=∠OBC.

(1)求證:AB為⊙O的切線;

(2)求⊙O的半徑;

(3)求tan∠BAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對某一個函數(shù)給出如下定義:若存在實數(shù)M0,對于任意的函數(shù)值y,都滿足﹣M≤y≤M,則稱這個函數(shù)是有界函數(shù),在所有滿足條件的M中,其最小值稱為這個函數(shù)的邊界值.例如,如圖中的函數(shù)是有界函數(shù),其邊界值是1

1)分別判斷函數(shù) y=x0)和y=x+1﹣4≤x≤2)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;

2)若函數(shù)y=﹣x+1a≤x≤bba)的邊界值是2,且這個函數(shù)的最大值也是2,求b的取值范圍;

3)將函數(shù) y=x2﹣1≤x≤m,m≥0)的圖象向下平移m個單位,得到的函數(shù)的邊界值是t,當(dāng)m在什么范圍時,滿足≤t≤1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級共有500名學(xué)生,團(tuán)委準(zhǔn)備調(diào)查他們對“低碳”知識的了解程度,

(1)在確定調(diào)查方式時,團(tuán)委設(shè)計了以下三種方案:

方案一:調(diào)查七年級部分女生;

方案二:調(diào)查七年級部分男生;

方案三:到七年級每個班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生

請問其中最具有代表性的一個方案是   ;

(2)團(tuán)委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計圖(如圖①、圖②所示),請你根據(jù)圖中信息,將其補(bǔ)充完整;

(3)請你估計該校七年級約有多少名學(xué)生比較了解“低碳”知識.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線分別交x軸、y軸于A、B兩點,拋物線經(jīng)過A、B兩點,點C是拋物線與x軸的另一個交點(與A點不重合).

1)求拋物線的解析式;

2)求△ABC的面積;

3)在拋物線的對稱軸上,是否存在點M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是( 。

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在△ABC中,∠A90°,ABACDBC的中點,E,F分別是AB,AC上的點,且BEAF

1)請你判斷△DEF形狀,并說明理由;

2)若BE2cm,CF4cm,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案