【題目】小明用下面的方法求出方程2 ﹣3=0的解,請你仿照他的方法求出下面另外兩個方程的解,并把你的解答過程填寫在下面的表格中.

方程

換元法得新方程

解新方程

檢驗

求原方程的解

2 ﹣3=0

=t,則2t﹣3=0

t=

t= >0

= ,所以x=

x﹣2 +1=0

x+2+ =0

【答案】令 =t,則t2﹣2t+1=0;t1=t2=1;t1=t2=1>0;
=1,所以x=1;令 =t,則t2+t=0;t1=0,t2=﹣1;t1=0≥0,t2=1<0;
=0,所以x=﹣2
【解析】解:填表如下:

方程

換元法得新方程

解新方程

檢驗

求原方程的解

x﹣2 +1=0

=t,則t2﹣2t+1=0

t1=t2=1

t1=t2=1>0

=1,所以x=1.

x+2+ =0

=t,則t2+t=0

t1=0,t2=﹣1

t1=0≥0,t2=﹣1<0

=0,所以x=﹣2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三個小球上分別標(biāo)有數(shù)字﹣2,﹣1,3,它們除數(shù)字外其余全部相同,現(xiàn)將它們放在一個不透明的袋子里,從袋子中隨機地摸出一球,將球上的數(shù)字記錄,記為m,然后放回;再隨機地摸取一球,將球上的數(shù)字記錄,記為n,這樣確定了點(m,n).
(1)請列表或畫出樹狀圖,并根據(jù)列表或樹狀圖寫出點(m,n)所有可能的結(jié)果;
(2)求點(m,n)在函數(shù)y=﹣ 的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D點,O是AB上一點,經(jīng)過A、D兩點的⊙O分別交AB、AC于點E、F.
(1)用尺規(guī)補全圖形(保留作圖痕跡,不寫作法);
(2)求證:BC與⊙O相切;
(3)當(dāng)AD=2 ,∠CAD=30°時,求劣弧AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應(yīng)點為C′,再將所折得的圖形沿EF折疊,使得點D和點A重合.若AB=3,BC=4,則折痕EF的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A1、A2、A3、…、An在x軸上,且OA1=A1A2=A2A3═An1An=1,分別過點A1、A2、A3、…、An作x軸的垂線,交反比例函數(shù)y= (x>0)的圖象于點B1、B2、B3、…、Bn , 過點B2作B2P1⊥A1B1于點P1 , 過點B3作B3P2⊥A2B2于點P2 , …,若記△B1P1B2的面積為S1 , △B2P2B3的面積為S2 , …,△BnPnBn+1的面積為Sn , 則S1+S2+…+S2017=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=2,點E為AD中點,點F為BC邊上任一點,過點F分別作EB,EC的垂線,垂足分別為點G,H,則FG+FH為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國務(wù)院辦公廳2015年3月16日發(fā)布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進一步普及足球知識,傳播足球文化,我市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統(tǒng)計圖表:

獲獎等次

頻數(shù)

頻率

一等獎

10

0.05

二等獎

20

0.10

三等獎

30

b

優(yōu)勝獎

a

0.30

鼓勵獎

80

0.40

請根據(jù)所給信息,解答下列問題:

(1)a= , b=
(2)補全頻數(shù)分布直方圖;
(3)若用扇形統(tǒng)計圖來描述獲獎分布情況,問獲得優(yōu)勝獎對應(yīng)的扇形圓心角的度數(shù)是多少?
(4)在這次競賽中,甲、乙、丙、丁四位同學(xué)都獲得一等獎,若從這四位同學(xué)中隨機選取兩位同學(xué)代表我市參加上一級競賽,請用樹狀圖或列表的方法,計算恰好選中甲、乙二人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(x1 , y1),點Q的坐標(biāo)為(x2 , y2),且x1≠x2 , y1≠y2 , 若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點P,Q的“相關(guān)矩形”,如圖為點P,Q的“相關(guān)矩形”示意圖.
(1)已知點A的坐標(biāo)為(1,0), ①若點B的坐標(biāo)為(3,1),求點A,B的“相關(guān)矩形”的面積;
②點C在直線x=3上,若點A,C的“相關(guān)矩形”為正方形,求直線AC的表達式;
(2)⊙O的半徑為 ,點M的坐標(biāo)為(m,3),若在⊙O上存在一點N,使得點M,N的“相關(guān)矩形”為正方形,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)樓房附近有一個斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡角到樓房的距離CB=8m.在D點處觀察點A的仰角為60°,已知坡角為30°,你能求出樓房AB的高度嗎?

查看答案和解析>>

同步練習(xí)冊答案