精英家教網 > 初中數學 > 題目詳情
如圖,已知AD是△ABC的高,AE是△ABC的外接圓的直徑.
(1)求證:AC•AB=AD•AE;
(2)若AB=6,AC=5,AD=3,求⊙O的面積.

【答案】分析:(1)首先連接BE,由圓周角定理可得∠C=∠E,又由AD是△ABC的高,AE是△ABC的外接圓的直徑,可得∠ADC=∠ABE=90°,則可證得△ADC∽△ABE,然后由相似三角形的對應邊成比例,即可證得AC•AB=AD•AE;
(2)由(1)即可求得直徑AE的長,繼而求得⊙O的面積.
解答:(1)證明:連接BE,
∵AD是△ABC的高,AE是△ABC的外接圓的直徑,
∴∠ADC=∠ABE=90°,
∵∠C=∠E,
∴△ADC∽△ABE.
∴AC:AE=AD:AB,
∴AC•AB=AD•AE;

(2)解:∵AB=6,AC=5,AD=3,
∴AE===10,
∴OA=5,
∴⊙O的面積為:π×52=25π.
點評:此題考查了圓周角定理與相似三角形的判定與性質.此題難度適中,注意掌握輔助線的作法,注意數形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

9、如圖,已知AD是△ABC的角平分線,CE⊥AD,垂足O,CE交AB于E,則下列命題:①AE=AC,②CO=OE,③∠AEO=∠ACO,④∠B=∠ECB.其中正確的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

18、如圖,已知AD是△ABC的角平分線,在不添加任何輔助線的前提下,要使△AED≌△AFD,需添加一個條件是:
AE=AF或∠EDA=∠FDA
,并給予證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知AD是等腰三角形ABC底邊上的高,AD與底邊BC的比是2:3,等腰三角形的面積是12cm,求等腰三角形ABC的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AD是△ABC的中線,∠ADC=45°,把△ABC沿AD對折,點C落在點E的位置,連接BE,若BC=6cm.
(1)求BE的長;
(2)當AD=4cm時,求四邊形BDAE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AD是△ABC的角平分線,DE∥AB交AC于點E.那么△ADE是等腰三角形嗎?請說明理由.

查看答案和解析>>

同步練習冊答案