【題目】如圖,直線AB、CD相交于點O,OF平分∠AOE,OF⊥CD,垂足為O.
(1)若∠AOE=120°,求∠BOD的度數(shù);
(2)寫出圖中所有與∠AOD互補的角: .
【答案】(1)30°;(2)∠AOC、∠BOD、∠DOE.
【解析】試題分析:(1)根據(jù)角平分線的性質(zhì)可得∠AOF=∠AOE=60°,再由OF⊥CD,可得∠COF=90°,再根據(jù)角的和差關(guān)系可得∠AOC的度數(shù),根據(jù)對頂角相等可得答案;
(2)根據(jù)兩個角的和為180°即為互補可得答案.
解:(1)∵OF平分∠AOE,∠AOE=120°,
∴∠AOF=∠AOE=60°.
∵OF⊥CD,
∴∠COF=90°,
∴∠AOC=∠COF﹣∠AOF=30°,
∵∠AOC和∠BOD是對頂角,
∴∠BOD=∠AOC=30°;
(2)與∠AOD互補的角有∠AOC、∠BOD、∠DOE,
故答案為:∠AOC、∠BOD、∠DOE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上的點A,B分別表示數(shù)﹣1和2,點C表示A,B兩點間的中點,則點C表示的數(shù)為( )
A. 0 B. 0.5 C. 1 D. 1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ACB=90°,點D、E在AB上,將△ACD、△BCE分別沿CD、CE翻折,點A、B分別落在點A′、B′的位置,再將△A′CD、△B′CE分別沿A′C、B′C翻折,點D與點E恰好重合于點O,則∠A′OB′的度數(shù)是( )
A.90° B.120° C.135° D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個三角形的三個內(nèi)角中( )
A. 至少有一個等于90度 B. 至少有一個大于90度
C. 可能只有一個小于90度 D. 不可能都小于60度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)當(dāng)運動3秒時,點M、N、P分別表示的數(shù)是 、 、 ;
(2)求運動多少秒時,點P到點M、N的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),在△ABC中,AB>AC>BC,∠ACB=80°,點D、E分別在線段BA、AB的延長線上,且AD=AC,BE=BC,則∠DCE= ;
(2)如圖(2),在△ABC中,AB>AC>BC,∠ACB=80°,點D、E分別在邊AB上,且AD=AC,BE=BC,求∠DCE的度數(shù);
(3)在△ABC中,AB>AC>BC,∠ACB=80°,點D、E分別在直線AB上,且AD=AC,BE=BC,則∠求DCE的度數(shù)(直接寫出答案);
(4)如圖(3),在△ABC中,AB=14,AC=15,BC=13,點D、E在直線AB上,且AD=AC,BE=BC.請根據(jù)題意把圖形補畫完整,并在圖形的下方直接寫出△DCE的面積.(如果有多種情況,圖形不夠用請自己畫出,各種情況用一個圖形單獨表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接春節(jié),某縣準(zhǔn)備用燈籠美化濱河路,許采用A、B兩種不同造型的燈籠共600個.且A型燈籠的數(shù)量比B型燈籠的多15個.
(1)求A、B兩種燈籠各需多少個?
(2)已知A、B型燈籠的單價分別為40元、30元,則這次美化工程需多少費用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校組織植樹活動,已知在甲處植樹的有14人,在乙處植樹的有6人,現(xiàn)調(diào)70人去支援.
(1)若要使在甲處植樹的人數(shù)與在乙處植樹的人數(shù)相等,應(yīng)調(diào)往甲處 人.
(2)若要使在甲處植樹的人數(shù)是在乙處植樹人數(shù)的2倍,問應(yīng)調(diào)往甲、乙兩處各多少人?
(3)通過適當(dāng)?shù)恼{(diào)配支援人數(shù),使在甲處植樹的人數(shù)恰好是在乙處植樹人數(shù)的n倍(n是大于1的正整數(shù),不包括1.)則符合條件的n的值共有 個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com