如圖,在平面直角坐標(biāo)系中,直線+2與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第二象限內(nèi)作正方形ABCD.
(1)求點(diǎn)A、B的坐標(biāo),并求邊AB的長(zhǎng);
(2)求點(diǎn)D和點(diǎn)C的坐標(biāo);
(3)你能否在x軸上找一點(diǎn)M,使△MDB的周長(zhǎng)最小?如果能,請(qǐng)求出M點(diǎn)的坐標(biāo);如果不能,說(shuō)明理由.
(1)(-4,0),(0,2),;(2)(-6,4),(-2,6);(3)能,(-2,0).
解析試題分析:(1)要求A,B點(diǎn)的坐標(biāo),實(shí)際上就是求一次函數(shù)與兩坐標(biāo)軸的交點(diǎn)問(wèn)題,那么就令x=0及y=0可以求出A,B點(diǎn)的坐標(biāo),由此就可以求出AB的長(zhǎng)度(2)要求點(diǎn)C,D的坐標(biāo)首先需要證△DEA≌△AOB,證出OA=DE,AE=OB,即可求出D的坐標(biāo),同理可以求出點(diǎn)C的坐標(biāo);(3)先作出D關(guān)于X軸的對(duì)稱(chēng)點(diǎn)F,連接BF,BF于X軸交點(diǎn)M就是符合條件的點(diǎn),求出F的坐標(biāo),進(jìn)而求出直線BF,再求出與X軸交點(diǎn)即可.
試題解析:解:(1)當(dāng)y=0時(shí),x=-4,則A的坐標(biāo)(-4,0),
當(dāng)x=0時(shí),y="2" ,則B的坐標(biāo)(0,2),
∴;
(2)過(guò)D做線段DE垂直x軸,交x軸與E
則△DEA≌△AOB ,
∴DE=AO=4,EA=OB=2
∴D的坐標(biāo)為(-6,4),
同理可得C的坐標(biāo)為(-2,6); (3)作B關(guān)于x軸的對(duì)稱(chēng)點(diǎn),連接M,與x軸的交點(diǎn)即為點(diǎn)M,則(0,-2),設(shè)直線M的解析式為,則有
直線M的解析式為
當(dāng)y=0,x=-2,則M的坐標(biāo)為(-2,0).
考點(diǎn):1.一次函數(shù)綜合題2.全等三角形的性質(zhì)及判定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)y=(m≠0)的圖象有公共點(diǎn)A(1,2).直線l⊥x軸于點(diǎn)N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點(diǎn)B,C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
甲、乙兩人同時(shí)從相距90千米的A地前往B地,甲乘汽車(chē),乙騎摩托車(chē),甲到達(dá)B地停留半小時(shí)后返回A地.如果是他們離A地的距離y(千米)與時(shí)間x(時(shí))之間的函數(shù)關(guān)系圖象.
(1)求甲從B地返回A地的過(guò)程中,y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)若乙出發(fā)后2小時(shí)和甲相遇,求乙從A地到B地用了多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=(k為常數(shù),且k≠0)的圖象都經(jīng)過(guò)點(diǎn)A(m,2).
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時(shí),y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在國(guó)道202公路改建工程中,某路段長(zhǎng)4000米,由甲乙兩個(gè)工程隊(duì)擬在30天內(nèi)(含30天)合作完成.已知兩個(gè)工程隊(duì)各有10名工人(設(shè)甲乙兩個(gè)工程隊(duì)的工人全部參與生產(chǎn),甲工程隊(duì)每天的工作量相同,乙工程隊(duì)每人每天的工作量相同).甲工程隊(duì)1天、乙工程2天共修路200米;甲工程隊(duì)2天、乙工程隊(duì)3天共修路350米.
(1)試問(wèn)甲乙兩個(gè)工程隊(duì)每天分別修路多少米?
(2)甲乙兩個(gè)工程隊(duì)施工10天后,由于工作需要需從甲隊(duì)抽調(diào)m人去學(xué)習(xí)新技術(shù),總部要求在規(guī)定時(shí)間內(nèi)完成,請(qǐng)問(wèn)甲隊(duì)可以抽調(diào)多少人?
(3)已知甲工程隊(duì)每天的施工費(fèi)用為0.6萬(wàn)元,乙工程隊(duì)每天的施工費(fèi)用為0.35萬(wàn)元,要使該工程的施工費(fèi)用最低,甲乙兩隊(duì)各做多少天?最低費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線PA是一次函數(shù)的圖象,直線PB是一次函數(shù)的圖象.
(1)求A、B、P三點(diǎn)的坐標(biāo);(2)求四邊形PQOB的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知一次函數(shù)y=kx+b與y=mx+n的圖象如圖所示.
(1)寫(xiě)出關(guān)于x,y的方程組的解;
(2)若0<kx+b<mx+n,根據(jù)圖像寫(xiě)出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
華盛印染廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品出廠價(jià)為30元,成本價(jià)為20元(不含污水處理部分費(fèi)用).在生產(chǎn)過(guò)程中,平均每生產(chǎn)1件產(chǎn)品就有0.5立方米污水排出,所以為了凈化環(huán)境,工廠設(shè)計(jì)了兩種對(duì)污水進(jìn)行處理的方案并準(zhǔn)備實(shí)施.
方案一:工廠污水先凈化處理后再排出,每處理1立方米污水所用的原料費(fèi)用為2元,并且每月排污設(shè)備損耗等其它各項(xiàng)開(kāi)支為27000元.
方案二:將污水排放到污水處理廠統(tǒng)一處理,每處理1立方米污水需付8元排污費(fèi).
(1)若實(shí)施方案一,為了確保印染廠有利潤(rùn),則每月的產(chǎn)量應(yīng)該滿足怎樣的條件?
(2)你認(rèn)為該工廠應(yīng)如何選擇污水處理方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:如圖,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的縱坐標(biāo)為1,點(diǎn)C的坐標(biāo)為(2,0).
(1)求該反比例函數(shù)的解析式;
(2)求直線BC的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com