如圖把一個(gè)長方形的紙片對(duì)折兩次,然后剪下一個(gè)角,為了得到一個(gè)銳角為60°的菱形,剪口與折痕所成的角α的度數(shù)應(yīng)為
A.15°或30°B.30°或45°
C.45°或60°D.30°或60°
D.

試題分析:∵四邊形ABCD是菱形,

∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,
∵∠BAC=60°,
∴∠BAD=180°-∠ABC=180°-60°=120°,
∴∠ABD=30°,∠BAC=60°.
∴剪口與折痕所成的角a的度數(shù)應(yīng)為30°或60°.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=,則下底BC的長為 __________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在ABCD中,點(diǎn)E在邊BC上,點(diǎn)F在BC的延長線上,且BE=CF。求證:∠BAE=∠CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,則其面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知菱形ABCD的對(duì)角線相交于點(diǎn)O,AC=6cm,BD=8cm,則菱形的高AE為     cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,邊長為1的菱形ABCD中,∠DAB=60度.連接對(duì)角線AC,以AC為邊作第二個(gè)菱形ACC1D1,使∠D1AC=60°;連接AC1,再以AC1為邊作第三個(gè)菱形AC1C2D2,使∠D2AC1=60°;…,按此規(guī)律所作的第n個(gè)菱形的邊長為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別是A(-3,0)、B(0,2)、C(3,0)、D(0,-2),則四邊形ABCD是 (     )
A.矩形B.菱形C.正方形D.梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小明遇到這樣一個(gè)問題:“如圖1,在邊長為a(a>2)的正方形ABCD各邊上分別截取AE=BF=CG=DH=1,當(dāng)∠AFQ=∠BGM=∠CHN=∠DEP=45°時(shí),求正方形MNPQ的面積.”
分析時(shí),小明發(fā)現(xiàn),分別延長QE,MF,NG,PH交FA,GB,HC,ED的延長線于 點(diǎn)R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四個(gè)全等的等腰直角三角形(如圖2)
請(qǐng)回答:
(1)若將上述四個(gè)等腰直角三角形拼成一個(gè)正方形(無縫隙不重疊),則這個(gè)正方形的邊長為_______
(2)求正方形MNPQ的面積.
(3)參考小明思 考問題的方法,解決問題:
如圖3,在等邊△ABC各邊上分別截取AD=BE=CF,再分別過點(diǎn)D,E,F(xiàn)作BC,AC,AB的垂線,得到等邊△RPQ.若S△RPQ=,則AD的長為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,平行四邊形中,的平分線,,則的長是(      )
A.1B.1.5C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案