【題目】如圖,直線(xiàn)y=mx+n交坐標(biāo)軸分別于A,B(0,1)兩點(diǎn),交雙曲線(xiàn)y=于點(diǎn)C(2,2),點(diǎn)D在直線(xiàn)AB上,AC=2CD.過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E,交雙曲線(xiàn)y=于點(diǎn)F,連接CF.
(1)求反比例函數(shù)y=和直線(xiàn)y=mx+n的表達(dá)式;
(2)求△CDF的面積.
【答案】(1)y=x+1;y= (2)2
【解析】
(1)根據(jù)待定系數(shù)法即可求得;
(2)作CH⊥x軸于H,根據(jù)平行線(xiàn)的性質(zhì)求得DE,進(jìn)一步求得D的坐標(biāo),把D的橫坐標(biāo)代入反比例函數(shù)y=中,求得F點(diǎn)的坐標(biāo),從而求得DF,然后根據(jù)三角形面積公式即可求得.
(1)∵直線(xiàn)y=mx+n經(jīng)過(guò)B(0,1),C(2,2)兩點(diǎn),∴,解得:,∴直線(xiàn)的表達(dá)式為y=;
∵點(diǎn)C(2,2)在雙曲線(xiàn)y=上,∴2=,解得:k=4,∴反比例函數(shù)的解析式為y=;
(2)作CH⊥x軸于H.
∵C(2,2),∴CH=2.
∵DE⊥x軸于點(diǎn)E,∴CH∥DE,∴==.
由直線(xiàn)y=x+1可知A(﹣2,0),∴OA=2,AH=4.
∵AC=2CD,∴===,∴DE=3,AE=6,∴D(4,3).
把x=4代入y=得:y=1,∴F(4,1),∴DF=3﹣1=2,∴△CDF的面積=×2×(4﹣2)=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交點(diǎn)為C,則圖中全等三角形共有( )
A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明用大小相同高度為2cm的10塊小長(zhǎng)方體壘了兩堵與地面垂直的木墻AD, BE,當(dāng)他將一個(gè)等腰直角三角板ABC如圖垂直放入時(shí),直角頂點(diǎn)C正好在水平線(xiàn)DE上,銳角頂點(diǎn)A和B分別與木墻的頂端重合,求兩堵木墻之間的距離。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=5,AD=BC=13,點(diǎn)E為射線(xiàn)AD上的一個(gè)動(dòng)點(diǎn),若△ABE與△A'BE關(guān)于直線(xiàn)BE對(duì)稱(chēng),當(dāng)△A'BC為直角三角形時(shí),AE的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠BDA=∠CDA,則不一定能使△ABD≌△ACD的條件是( )
A. BD=DC B. AB=AC C. ∠B=∠C D. ∠BAD=∠CAD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】重慶市的重大惠民工程﹣﹣公租房建設(shè)已陸續(xù)竣工,計(jì)劃10年內(nèi)解決低收入人群的住房問(wèn)題,前6年,每年竣工投入使用的公租房面積y(單位:百萬(wàn)平方米),與時(shí)間x的關(guān)系是y=x+5,(x單位:年,1≤x≤6且x為整數(shù));后4年,每年竣工投入使用的公租房面積y(單位:百萬(wàn)平方米),與時(shí)間x的關(guān)系是y=-x+(x單位:年,7≤x≤10且x為整數(shù)).假設(shè)每年的公租房全部出租完.另外,隨著物價(jià)上漲等因素的影響,每年的租金也隨之上調(diào),預(yù)計(jì),第x年投入使用的公租房的租金z(單位:元/m2)與時(shí)間x(單位:年,1≤x≤10且x為整數(shù))滿(mǎn)足一次函數(shù)關(guān)系如下表:
z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z與x的函數(shù)關(guān)系式;
(2)求政府在第幾年投入的公租房收取的租金最多,最多為多少百萬(wàn)元;
(3)若第6年竣工投入使用的公租房可解決20萬(wàn)人的住房問(wèn)題,政府計(jì)劃在第10年投入的公租房總面積不變的情況下,要讓人均住房面積比第6年人均住房面積提高a%,這樣可解決住房的人數(shù)將比第6年減少1.35a%,求a的值.
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】法國(guó)數(shù)學(xué)家柯西于1813年在拉格朗日、高斯的基礎(chǔ)上徹底證明了《費(fèi)馬多邊形數(shù)定理》,其主要突破在“五邊形數(shù)”的證明上.如圖為前幾個(gè)“五邊形數(shù)”的對(duì)應(yīng)圖形,請(qǐng)據(jù)此推斷,第10個(gè)“五邊形數(shù)”應(yīng)該為( 。,第2018個(gè)“五邊形數(shù)”的奇偶性為( 。
A. 145;偶數(shù) B. 145;奇數(shù) C. 176;偶數(shù) D. 176;奇數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在△ABC中,BF、CF是角平分線(xiàn),DE∥BC,分別交AB、AC于點(diǎn)D、E,DE經(jīng)過(guò)點(diǎn)F.結(jié)論:①△BDF和△CEF都是等腰三角形;②DE=BD+CE; ③△ADE的周長(zhǎng)=AB+AC;④BF=CF.其中正確的是______.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明學(xué)習(xí)電學(xué)知識(shí)后,用四個(gè)開(kāi)關(guān)按鍵(每個(gè)開(kāi)關(guān)按鍵閉合的可能性相等)、一個(gè)電源和一個(gè)燈泡設(shè)計(jì)了一個(gè)電路圖
(1)若小明設(shè)計(jì)的電路圖如圖1(四個(gè)開(kāi)關(guān)按鍵都處于打開(kāi)狀態(tài))如圖所示,求任意閉合一個(gè)開(kāi)關(guān)按鍵,燈泡能發(fā)光的概率;
(2)若小明設(shè)計(jì)的電路圖如圖2(四個(gè)開(kāi)關(guān)按鍵都處于打開(kāi)狀態(tài))如圖所示,求同時(shí)時(shí)閉合其中的兩個(gè)開(kāi)關(guān)按鍵,燈泡能發(fā)光的概率.(用列表或樹(shù)狀圖法)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com