在Rt△ABC中,∠C=90°,AB=10.若以點C為圓心,CB為半徑的圓恰好經(jīng)過AB的中點D,則AC=
A.5B.C.D.6
C

試題分析:如圖,連接CD,

∵∠C=90°,D為AB的中點,∴CD=DA=DB。
而CD=CB,∴CD=CB=DB,即△CDB為等邊三角形。∴∠B=60°。
∵AB=10,
。
故選C!
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)問題探究
數(shù)學課上,李老師給出以下命題,要求加以證明.
如圖1,在△ABC中,M為BC的中點,且MA=BC,求證∠BAC=90°.
同學們經(jīng)過思考、討論、交流,得到以下證明思路:
思路一 直接利用等腰三角形性質(zhì)和三角形內(nèi)角和定理…
思路二 延長AM到D使DM=MA,連接DB,DC,利用矩形的知識…
思路三 以BC為直徑作圓,利用圓的知識…
思路四…
請選擇一種方法寫出完整的證明過程;
(2)結(jié)論應用
李老師要求同學們很好地理解(1)中命題的條件和結(jié)論,并直接運用(1)命題的結(jié)論完成以下兩道題:
①如圖2,線段AB經(jīng)過圓心O,交⊙O于點A,C,點D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求證:直線BD是⊙O的切線;
②如圖3,△ABC中,M為BC的中點,BD⊥AC于D,E在AB邊上,且EM=DM,連接DE,CE,如果∠A=60°,請求出△ADE與△ABC面積的比值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線分別與x、y軸交于點B、C,點A(﹣2,0),P是直線BC上的動點.

(1)求∠ABC的大;
(2)求點P的坐標,使∠APO=30°;
(3)在坐標平面內(nèi),平移直線BC,試探索:當BC在不同位置時,使∠APO=30°的點P的個數(shù)是否保持不變?若不變,指出點P的個數(shù)有幾個?若改變,指出點P的個數(shù)情況,并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,正方形ABCD的邊長為2,點M是BC的中點,P是線段MC上的一個動點(不與M、C重合),以AB為直徑作⊙O,過點P作⊙O的切線,交AD于點F,切點為E.

(1)求證:OF∥BE;
(2)設BP=x,AF=y,求y關于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)延長DC、FP交于點G,連接OE并延長交直線DC與H(圖2),問是否存在點P,使△EFO∽△EHG(E、F、O與E、H、G為對應點)?如果存在,試求(2)中x和y的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年四川綿陽12分)如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.

(1)判斷CD與⊙O的位置關系,并證明你的結(jié)論;
(2)若E是的中點,⊙O的半徑為1,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,AB垂直于弦CD,∠BOC=70°,則∠ABD=
A.20°B.46°C.55°D.70°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是⊙O的弦,OC⊥AB于點C,連接OA、OB.點P是半徑OB上任意一點,連接AP.若OA=5cm,OC=3cm,則AP的長度可能是   cm(寫出一個符合條件的數(shù)值即可)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是半圓O的直徑,且AB=8,點C為半圓上的一點.將此半圓沿BC所在的直線折疊,若圓弧BC恰好過圓心O,則圖中陰影部分的面積是     .(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠BAC= Rt∠,AB=AC=2,以AB為直徑的⊙O交BC于D,

(1)求證:點D平分弧AB;
(2)求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案