(本題滿分12分)
問題情境
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最。孔钚≈凳嵌嗌?
數(shù)學(xué)模型
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為.
探索研究
⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)的圖象性質(zhì).
① 填寫下表,畫出函數(shù)的圖象:
x | … | 1 | 2 | 3 | 4 | … | |||
y | … | | | | | | | | … |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本題滿分12分)在平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),AB=4,與y軸交于點(diǎn)C,且過點(diǎn)(2,3).
(1)求此二次函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,連接CD、CB,問拋物線上是否存在點(diǎn)P,使得∠PBC+∠BDC=90°. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)K拋物線上C關(guān)于對稱軸的對稱點(diǎn),點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、K、F、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:江蘇省蘇州市高新區(qū)2013屆七年級下學(xué)期期末考試數(shù)學(xué)試題 題型:解答題
(本題滿分12分)在平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),AB=4,與y軸交于點(diǎn)C,且過點(diǎn)(2,3).
(1)求此二次函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,連接CD、CB,問拋物線上是否存在點(diǎn)P,使得∠PBC+∠BDC=90°. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)K拋物線上C關(guān)于對稱軸的對稱點(diǎn),點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、K、F、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(湖北咸寧卷)數(shù)學(xué) 題型:解答題
(本題滿分12分)如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點(diǎn),點(diǎn)C為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線AB與CD交點(diǎn)的坐標(biāo);
(2)動點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個單位長度的速度向終點(diǎn)D運(yùn)動;同時[來源:中教網(wǎng)],動點(diǎn)M從點(diǎn)A出發(fā),沿線段AB以每秒個單位長度的速度向終點(diǎn)B運(yùn)動,過點(diǎn)P作,垂足為H,連接,.設(shè)點(diǎn)P的運(yùn)動時間為秒.
①若△MPH與矩形AOCD重合部分的面積為1,求的值;
②點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對稱點(diǎn),問是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com