【題目】為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長(zhǎng)25m)的空地上修建一個(gè)矩形綠化帶ABCD,綠化帶一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍。ㄈ鐖D).若設(shè)綠化帶的BC邊長(zhǎng)為x m,綠化帶的面積為y m2.
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),滿(mǎn)足條件的綠化帶的面積最大.
【答案】(1)y=+20x(0<x≤25);(2)當(dāng)x=20時(shí),面積最大.
【解析】
試題(1)BC=x,則AB=,然后根據(jù)面積=長(zhǎng)×寬列出函數(shù)解析式,BC的長(zhǎng)度不等大于墻的長(zhǎng)度;(2)首先將函數(shù)解析式配成頂點(diǎn)式,然后進(jìn)行求最值.
試題解析:(1)由題意得:
自變量x的取值范圍是0<x≤25
(2)∵20<25,∴當(dāng)x=20時(shí),y有最大值200平方米
即當(dāng)x=20時(shí),滿(mǎn)足條件的綠化帶面積最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)若此方程的一個(gè)根為1,求的值;
(2)求證:不論取何實(shí)數(shù),此方程都有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分別交直線(xiàn)AB、AC于點(diǎn)M、N.
(1)如圖1,當(dāng)α=90°時(shí),求證:AM=CN;
(2)如圖2,當(dāng)α=45°時(shí),問(wèn)線(xiàn)段BM、MN、AN之間有何數(shù)量關(guān)系,并證明;
(3)如圖3,當(dāng)α=45°時(shí),旋轉(zhuǎn)∠MON,問(wèn)線(xiàn)段之間BM、MN、AN有何數(shù)量關(guān)系?并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】表中所列 的7對(duì)值是二次函數(shù) 圖象上的點(diǎn)所對(duì)應(yīng)的坐標(biāo),其中
x | … | … | |||||||
y | … | 7 | m | 14 | k | 14 | m | 7 | … |
根據(jù)表中提供的信息,有以下4 個(gè)判斷:
① ;② ;③ 當(dāng)時(shí),y 的值是 k;④ 其中判斷正確的是 ( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,⊙O是△ABC的外接圓,點(diǎn)D是上一動(dòng)點(diǎn)(不與點(diǎn)A、C重合),且∠ADB=∠BAC=45°.
(1)求證:AC是⊙O的直徑;
(2)當(dāng)點(diǎn)D在運(yùn)動(dòng)到使AD+CD=5時(shí),則線(xiàn)段BD的長(zhǎng)為 ;(直接寫(xiě)出結(jié)果)
(3)如圖2,把△DBC沿直線(xiàn)BC翻折得到△EBC,連接AE,當(dāng)點(diǎn)D在運(yùn)動(dòng)時(shí),探究線(xiàn)段AE、BD、CD之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過(guò)網(wǎng)格點(diǎn)A、B、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:
(1)請(qǐng)?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,D點(diǎn)坐標(biāo)為 ;
(2)連接AD、CD,則⊙D的半徑為 ;扇形DAC的圓心角度數(shù)為 ;
(3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開(kāi)圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中點(diǎn).
小明對(duì)圖①進(jìn)行了如下探究:在線(xiàn)段AD上任取一點(diǎn)P,連接PB.將線(xiàn)段PB繞點(diǎn)P按逆時(shí)針?lè)较蛐D(zhuǎn)80°,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)E,連接BE,得到△BPE.小明發(fā)現(xiàn),隨著點(diǎn)P在線(xiàn)段AD上位置的變化,點(diǎn)E的位置也在變化,點(diǎn)E可能在直線(xiàn)AD的左側(cè),也可能在直線(xiàn)AD上,還可能在直線(xiàn)AD的右側(cè).
請(qǐng)你幫助小明繼續(xù)探究,并解答下列問(wèn)題:
(1)當(dāng)點(diǎn)E在直線(xiàn)AD上時(shí),如圖②所示.
①∠BEP= °;
②連接CE,直線(xiàn)CE與直線(xiàn)AB的位置關(guān)系是 .
(2)請(qǐng)?jiān)趫D③中畫(huà)出△BPE,使點(diǎn)E在直線(xiàn)AD的右側(cè),連接CE.試判斷直線(xiàn)CE與直線(xiàn)AB的位置關(guān)系,并說(shuō)明理由.
(3)當(dāng)點(diǎn)P在線(xiàn)段AD上運(yùn)動(dòng)時(shí),求AE的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)E為AB上一點(diǎn),AE=2,點(diǎn)F在AD上,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線(xiàn)上時(shí),折痕EF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與軸交于兩點(diǎn)(在的左側(cè)),與軸交于點(diǎn), 點(diǎn)與點(diǎn)關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng).
(1)求拋物線(xiàn)的解析式及點(diǎn)的坐標(biāo):
(2)點(diǎn)是拋物線(xiàn)對(duì)稱(chēng)軸上的一動(dòng)點(diǎn),當(dāng)的周長(zhǎng)最小時(shí),求出點(diǎn)的坐標(biāo);
(3)點(diǎn)在軸上,且,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com