【題目】定義:點(diǎn)P為△ABC內(nèi)部或邊上的點(diǎn),若滿足△PAB,△PBC,△PAC至少有一個(gè)三角形與△ABC相似(點(diǎn)P不與△ABC頂點(diǎn)重合),則稱點(diǎn)P為△ABC的自相似點(diǎn).
例如:如圖1,點(diǎn)P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點(diǎn)P為△ABC的自相似點(diǎn).
在平面直角坐標(biāo)系xOy中,
(1)點(diǎn)A坐標(biāo)為(, ), AB⊥x軸于B點(diǎn),在E(2,1),F (, ),G (, ),這三個(gè)點(diǎn)中,其中是△AOB的自相似點(diǎn)的是 (填字母);
(2)若點(diǎn)M是曲線C: (, )上的一個(gè)動(dòng)點(diǎn),N為x軸正半軸上一個(gè)動(dòng)點(diǎn);
圖2
① 如圖2, ,M點(diǎn)橫坐標(biāo)為3,且NM = NO,若點(diǎn)P是△MON的自相似點(diǎn),求點(diǎn)P的坐標(biāo);
②若,點(diǎn)N為(2,0),且△MON的自相似點(diǎn)有2個(gè),則曲線C上滿足這樣條件的點(diǎn)M共有 個(gè),請(qǐng)?jiān)趫D3中畫出這些點(diǎn)(保留必要的畫圖痕跡).
【答案】(1)F,G(2)①或②4
【解析】試題分析:(1)如圖,連接OF、OE、GB、FB,作GM⊥OB于M,FN⊥OB于N.只要證明△OBG∽△OAB,可得點(diǎn)G是自相似點(diǎn),△FOB∽△BAO,可得點(diǎn)F是自相似點(diǎn).
(2)①如圖1,過(guò)點(diǎn)M作MH⊥x軸于H點(diǎn).將M的橫坐標(biāo)代入反比例函數(shù)解析式求出點(diǎn)M的坐標(biāo)和OM的長(zhǎng),進(jìn)而求出直線OM的解析式.在Rt△MHN中,根據(jù)勾股定理求出ON=MN=m=2.如圖2, ∽,過(guò)點(diǎn)作⊥x軸于Q點(diǎn),由相似的性質(zhì)得出, .得出P1的橫坐標(biāo)為1,代入OM解析式求出即可求出P1的坐標(biāo);如圖3, ,根據(jù)相似三角形的性質(zhì)求出P2N的長(zhǎng),進(jìn)而可得P2的坐標(biāo).
②以O為圓心2為半徑作圓交反比例函數(shù)于M1,M2,以N為圓心2為半徑作圓交反比例函數(shù)的圖象于M3,M4.滿足條件的點(diǎn)M有4個(gè).
試題解析:
解:(1)如圖中,連接OF、OE、GB、FB,作GM⊥OB于M,FN⊥OB于N.
由題意可知點(diǎn)G在OA上,
∵tan∠AOB==,
∴∠AOB=60°,
∵tan∠GBM===,
∴∠OBG=30°,
∴∠BOG=∠AOB,∠OBG=∠A,
∴△OBG∽△OAB,
∴點(diǎn)G是自相似點(diǎn),
同理可得∠FON=∠A=30°,∠FBO=∠AOB=60°,
∴△FOB∽△BAO,
∴點(diǎn)F是自相似點(diǎn),
span>故答案為F,G;
(2)①如圖1,過(guò)點(diǎn)M作MH⊥x軸于H點(diǎn).
∵M點(diǎn)的橫坐標(biāo)為3,
∴.
∴.
∴,直線OM的表達(dá)式為.
∵MH⊥x軸,
∴在Rt△MHN中, °,.
設(shè)NM=NO=m,則.
∴.
∴ON=MN=m=2.
如圖2, ∽,過(guò)點(diǎn)作⊥x軸于Q點(diǎn),
∴, .
∵的橫坐標(biāo)為1,
∴.
∴.
如圖3, ,
∴.
∴.
∵的縱坐標(biāo)為,
∴.
∴.
∴.
綜上所述, 或.
②以O為圓心2為半徑作圓交反比例函數(shù)于M1,M2,以N為圓心2為半徑作圓交反比例函數(shù)的圖象于M3,M4.滿足條件的點(diǎn)M有4個(gè).
故答案為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)關(guān)于是否成反比例的命題,判斷它們的真假.
(1)面積一定的等腰三角形的底邊長(zhǎng)和底邊上的高成反比例;
(2)面積一定的菱形的兩條對(duì)角線長(zhǎng)成反比例;
(3)面積一定的矩形的兩條對(duì)角線長(zhǎng)成反比例;
(4)面積一定的直角三角形的兩直角邊長(zhǎng)成比例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面
的最大距離是5m.
(1)經(jīng)過(guò)討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;
(2)因?yàn)樯嫌嗡畮?kù)泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P,給出如下定義:記點(diǎn)P到x軸的距離為,到y軸的距離為,若,則稱為點(diǎn)P的最大距離;若,則稱為點(diǎn)P的最大距離.
例如:點(diǎn)P(, )到到x軸的距離為4,到y軸的距離為3,因?yàn)?/span>3<4,所以點(diǎn)P的最大距離為.
(1)①點(diǎn)A(2, )的最大距離為________;
②若點(diǎn)B(, )的最大距離為,則的值為________;
(2)若點(diǎn)C在直線上,且點(diǎn)C的最大距離為,求點(diǎn)C的坐標(biāo);
(3)若⊙O上存在點(diǎn)M,使點(diǎn)M的最大距離為,直接寫出⊙O的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)的性質(zhì).
(1)先從簡(jiǎn)單情況開始探究:
① 當(dāng)函數(shù)為時(shí), 隨增大而 (填“增大”或“減小”);
② 當(dāng)函數(shù)為時(shí),它的圖象與直線的交點(diǎn)坐標(biāo)為 ;
(2)當(dāng)函數(shù)為時(shí),
下表為其y與x的幾組對(duì)應(yīng)值.
x | … | 0 | 1 | 2 | 3 | 4 | … | ||||
y | … | 1 | 2 | 3 | 7 | … |
①如圖,在平面直角坐標(biāo)系xOy中,描出了上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),請(qǐng)根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
②根據(jù)畫出的函數(shù)圖象,寫出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某小區(qū)的一個(gè)健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端點(diǎn)A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有A型、B型、C型三種不同的紙板,其中A型:邊長(zhǎng)為a厘米的正方形;B型:長(zhǎng)為a厘米,寬為1厘米的長(zhǎng)方形;C型:邊長(zhǎng)為1厘米的正方形.
(1)A型2塊,B型4塊,C型4塊,此時(shí)紙板的總面積為 平方厘米;
①?gòu)倪@10塊紙板中拿掉1塊A型紙板,剩下的紙板在不重疊的情況下,可以緊密的排出一個(gè)大正方形,這個(gè)大正方形的邊長(zhǎng)為 厘米;
②從這10塊紙板中拿掉2塊同類型的紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出兩個(gè)相同的大正方形,請(qǐng)問(wèn)拿掉的是2塊哪種類型的紙板?(計(jì)算說(shuō)明)
(2)A型12塊,B型12塊,C型4塊,從這28塊紙板中拿掉1塊紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出三個(gè)相同形狀的大正方形,則大正方形的邊長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在樓房MN前有兩棵樹與樓房在同一直線上,且垂直于地面,為了測(cè)量樹AB、CD的高度,小明爬到樓房頂部M處,光線恰好可以經(jīng)過(guò)樹CD的頂站C點(diǎn)到達(dá)樹AB的底部B點(diǎn),俯角為45°,此時(shí)小亮測(cè)得太陽(yáng)光線恰好經(jīng)過(guò)樹CD的頂部C點(diǎn)到達(dá)樓房的底部N點(diǎn),與地面的夾角為30°,樹CD的影長(zhǎng)DN為15米,請(qǐng)求出樹AB、CD的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(-11)+(+8) (2)
(3)(+3.5)-(-2.3) -(-2.9) (4)
(5)(-7)-(-4)+(+5)-(-9)
(6)1+(-6.5)+3+(-1.75)+2;
(7)
(8)1-3+5-7+9-11+…+97-99
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com