. (7分)已知:如圖,□ABCD中,∠BCD的平分線交AB于E,交DA的延長線于F.
(1) 求證:DF=DC;
(2) 當(dāng)DE⊥FC時(shí),求證:AE=BE.
證明:(1)∵FC平分∠BCD ∴∠DCF=∠FCB………1分
∵四邊形ABCD為□ ∴FD∥BC ∴∠DFC=∠FCB………2分
∴∠DCF=∠DFC
∴DF=DC                       ………3分
(2)∵DF=DC,DE⊥FC
∴FE=EC                       ………4分
∵四邊形ABCD為□  ∴FD∥BC
∴∠DFC=∠FCB
又∵∠AEF=∠CEB
∴△AFE≌△BCE                 ………6分
∴AE=BE                       ………7分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)如圖甲,在△ABC中,E是AC邊上的一點(diǎn),
(1)在圖甲中,作出以BE為對(duì)角線的平行四邊形BDEF,使D、F分別在BC和AB邊上;
(2)改變點(diǎn)E的位置,則圖甲中所作的平行四邊形BDEF有沒有可能為菱形?若有,請(qǐng)?jiān)趫D乙中作出點(diǎn)E的位置(用尺規(guī)作圖,并保留作圖痕跡);若沒有,請(qǐng)說明理由.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等腰梯形中,,,中點(diǎn),連接
(1)求證:;
(2)若,過點(diǎn),垂足為點(diǎn),交于點(diǎn),連接
求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分9分)如圖,在中,,,把邊長分別為個(gè)正方形依次放入中,請(qǐng)回答下列問題:
(1)按要求填表

(2)第個(gè)正方形的邊長       ;
(3)若是正整數(shù),且,試判斷的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,把一長方形紙片沿MN折疊后,點(diǎn)D,C分別落在D′,C′的位置.若∠AMD′=36°,則∠NFD′等于..........................................【 】
A.144°B.126°
C.108°D.72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,直線與y軸交于點(diǎn),以為邊作正方形然后延長與直線交于點(diǎn),得到第一個(gè)梯形;再以為邊作正方形,同樣延長與直線交于點(diǎn)得到第二個(gè)梯形;,再以為邊作正方形,延長,得到第三個(gè)梯形;……則第2個(gè)
的面積是          ;第(n是正整數(shù))個(gè)梯形的面積是           (用含n的式子
表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知梯形ABCD中,AD∥BC,AB=AD(如圖所示),∠BAD的平分線AE交BC于點(diǎn)E,連接DE.
(1)在下圖中,用尺規(guī)作∠BAD的平分線AE(保留作圖痕跡不寫作法),并證明四邊形ABED是菱形.
(2)若∠ABC=60°,EC=2BE.求證:ED⊥DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(6分)如圖,已知,四邊形ABCD為梯形,分別過點(diǎn)A、D作底邊BC
的垂線,垂足分別為點(diǎn)E、F.四邊形ADFE是何種特殊的四邊形?請(qǐng)寫出你的理
由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(Ⅰ)(本小題滿分7分)
某服裝廠承攬一項(xiàng)生產(chǎn)夏涼小衫1600件的任務(wù),計(jì)劃用t天完成.
(1)寫出每天生產(chǎn)夏涼小衫w(件)與生產(chǎn)時(shí)間t(天)(t>4)之間的函數(shù)關(guān)系式;
(2)由于氣溫提前升高,商家與服裝廠商議調(diào)整計(jì)劃,決定提前4天交貨,那么服裝廠每天要多做多少件夏涼小衫才能完成任務(wù)?
(Ⅱ)(本小題滿分7分)
如圖,已知矩形ABCD中,E是AD上的一點(diǎn),F(xiàn)是AB上的一點(diǎn),EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周長為32cm,求AE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案