【題目】(1)如圖1,在四邊形中,,,、分別是邊、上的點,若,可求得、、之間的數量關系為______.(只思考解題思路,完成填空即可,不必書寫證明過程)
(2)如圖2,在四邊形中,,,、分別是邊、延長線上的點,若,判斷、、之間的數量關系還成立嗎,若成立,請完成證明,若不成立,請說明理由.(可借鑒第(1)問的解題經驗)
【答案】(1)EF=BE+DF;(2)不成立,證明見解析.
【解析】
(1)延長CB至M,使BM=DF,證明△ABM≌△ADF,再證明△EAH≌△EAF,可得出結論;
(2)在BE上截取BG,使BG=DF,連接AG.證明△ABG≌△ADF和△AEG≌△AEF,即可得出EF=BE-FD.
(1)EF=BE+DF;
如圖,延長CB至M,使BM=DF,
∵∠ABC =∠D =90°,
∴∠1=∠D,
在△ABM與△ADF中,
,
∴△ABM≌△ADF(SAS).
∴AF=AM,∠2=∠3,
∵,
∴∠2+∠4=∠BAD=∠EAF,
∴∠3+∠4=∠EAF,即∠MAE=∠EAF.
在△AME與△AFE中,
,
∴△AME≌△AFE(SAS).
∴EF=ME,即EF=BE+BM.
∴EF=BE+DF.
(2)不成立,應該是EF=BE-FD.
證明:如圖2,在BE上截取BG,使BG=DF,連接AG.
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
∵在△ABG與△ADF中,
,
∴△ABG≌△ADF(SAS).
∴∠BAG=∠DAF,AG=AF.
∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD,
∴∠GAE=∠EAF.
∵在△AEG與△AEF中,,
∴△AEG≌△AEF(SAS).
∴EG=EF,
∵EG=BE-BG,
∴EF=BE-FD.
科目:初中數學 來源: 題型:
【題目】某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數相同.
求甲、乙兩種商品的每件進價;
該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發(fā)現甲種商品銷量不好,商場決定:甲種商品銷售一定數量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的圖象以A(﹣1,4)為頂點,且過點B(2,﹣5)
(1)求該函數的關系式;
(2)求該函數圖象與坐標軸的交點坐標;
(3)將該函數圖象向右平移,當圖象經過原點時,A、B兩點隨圖象移至A′、B′,求△O A′B′的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】發(fā)現思考:已知等腰三角形ABC的兩邊分別是方程x2﹣7x+10=0的兩個根,求等腰三角形ABC三條邊的長各是多少?下邊是涵涵同學的作業(yè),老師說他的做法有錯誤,請你找出錯誤之處并說明錯誤原因.
涵涵的作業(yè)
解:x2﹣7x+10=0
a=1 b=﹣7 c=10
∵b2﹣4ac=9>0
∴x==
∴x1=5,x2=2
所以,當腰為5,底為2時,等腰三角形的三條邊為5,5,2.
當腰為2,底為5時,等腰三角形的三條邊為2,2,5.
探究應用:請解答以下問題:
已知等腰三角形ABC的兩邊是關于x的方程x2﹣mx+﹣=0的兩個實數根.
(1)當m=2時,求△ABC的周長;
(2)當△ABC為等邊三角形時,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,以邊長為8的正方形紙片ABCD的邊AB為直徑作⊙O,交對角線AC于點E.
(1)線段AE=____________;
(2)如圖2,以點A為端點作∠DAM=30°,交CD于點M,沿AM將四邊形ABCM剪掉,使Rt△ADM繞點A逆時針旋轉(如圖3),設旋轉角為α(0°<α<150°),旋轉過程中AD與⊙O交于點F.
①當α=30°時,請求出線段AF的長;
②當α=60°時,求出線段AF的長;判斷此時DM與⊙O的位置關系,并說明理由;
③當α=___________°時,DM與⊙O相切。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖表示的是用火柴棒搭成的一個個圖形,第一個圖形用了5根火柴,第二個圖形用了8根火柴,…,用281根火柴棒搭成了第( )個圖形.
A. 93 B. 94 C. 80 D. 81
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90', AB=AC, AE是過點A的一條直線,且點B, C在AE的異側,BD⊥AE于點D, CE⊥AE于點E.
(1)求證: BD=DE +CE ;
(2)若當直線AE旋轉到圖②位置時,判斷BD與DE,CE的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某服裝廠生產一種西裝和領帶,西裝每套定價元,領帶每條定價元,廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:
①買一套西裝送一條領帶;
②西裝和領帶都按定價的付款.
現某客戶要到該服裝廠購買西裝套,領帶條().
(1)客戶分別按方案①、方案②購買,各需付款多少元?(用含的代數式表示);
(2)若,通過計算說明此時按哪種方案購買較為合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】尺規(guī)作圖要求:Ⅰ、過直線外一點作這條直線的垂線;Ⅱ、作線段的垂直平分線;
Ⅲ、過直線上一點作這條直線的垂線;Ⅳ、作角的平分線.
如圖是按上述要求排亂順序的尺規(guī)作圖:
則正確的配對是( 。
A. ①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B. ①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C. ①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D. ①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com