【題目】已知ABCD的周長為36cm,過點AAEBC,AFCD,垂足分別為E、F.AE=2cm,AF=4cm.ABCD的各邊長.

【答案】AB=CD=6cm,AD=BC=12cm.

【解析】【試題分析】根據(jù)ABCD的周長為36cm,得BC+CD=18;根據(jù)等面積法,得SABCD=BC·AE=CD·AF,解得:BC=2CD,兩式聯(lián)立方程組,,解得,根據(jù)平行四邊形的對邊相等,得AB=CD=6cm,AD=BC=12cm.

【試題解析】

ABCD中,AB=CD,BC=AD,又∵ABCD的周長為36cm.即AB+BC+CD+AD=36,即BC+CD=18,又∵SABCD=BC·AE=CD·AF,∴2BC=4CD,即BC=2CD,解方程組,得,∴AB=CD=6cm,AD=BC=12cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二廣高速在益陽境內(nèi)的建設(shè)正在緊張地進行,現(xiàn)有大量的沙石需要運輸.益安車隊有載重量為8噸、10噸的卡車共12輛,全部車輛運輸一次能運輸110噸沙石.

1)求益安車隊載重量為8噸、10噸的卡車各有多少輛?

2)隨著工程的進展,益安車隊需要一次運輸沙石165噸以上,為了完成任務(wù),準備新增購這兩種卡車共6輛,車隊有多少種購買方案,請你一一寫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF

1)試說明AC=EF;

2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明.

已知:如圖,互補,

求證:

證明:互補

,(已知)

//

.(

,(已知)

,即.(等式的性質(zhì))

// (內(nèi)錯角相等,兩直線平行)

.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀了其中的奧秘.

你知道怎樣迅速準確的計算出結(jié)果嗎?請你按下面的問題試一試:

,,又,

能確定59319的立方根是個兩位數(shù).

59319的個位數(shù)是9,又

能確定59319的立方根的個位數(shù)是9.

③如果劃去59319后面的三位319得到數(shù)59,

,則,可得,

由此能確定59319的立方根的十位數(shù)是3

因此59319的立方根是39.

(1)現(xiàn)在換一個數(shù)110592,按這種方法求立方根,請完成下列填空.

①它的立方根是 位數(shù).

②它的立方根的個位數(shù)是

③它的立方根的十位數(shù)是

110592的立方根是

(2)請直接填寫結(jié)果:

;

;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C、D、E、F是⊙O的六等分點.
(1)連接AB、AD、AF,求證:AB+AF=AD;
(2)若P是圓周上異于已知六等分點的動點,連接PB、PD、PF,寫出這三條線段長度的數(shù)量關(guān)系(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,EAD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=EAB,連接AG

1)如圖①,當EFAB相交時,若∠EAB=60°,求證:EG=AG+BG;

2)如圖②,當EFCD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】命題:“兩個角的和等于平角時,這兩個角互為鄰補角”是_____命題(填“真”或“假”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形具有四條對稱軸的是(

A.等邊三角形B.平行四邊形C.矩形D.正方形

查看答案和解析>>

同步練習(xí)冊答案