【題目】在全校的科技制作大賽中,王浩同學(xué)用木板制作了一個(gè)帶有卡槽的三角形手機(jī)架.如圖所示,卡槽的寬度DF與內(nèi)三角形ABC的AB邊長(zhǎng)相等.已知AC=20cm,BC=18cm,∠ACB=50°,一塊手機(jī)的最長(zhǎng)邊為17cm,王浩同學(xué)能否將此手機(jī)立放入卡槽內(nèi)?請(qǐng)說(shuō)明你的理由(參考數(shù)據(jù):sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)
【答案】王浩同學(xué)能將手機(jī)放入卡槽DF內(nèi),理由見(jiàn)解析
【解析】
作AD⊥BC于D,根據(jù)正弦、余弦的定義分別求出AD和CD的長(zhǎng),求出DB的長(zhǎng),根據(jù)勾股定理即可得到AB的長(zhǎng),然后與17比較大小,得到答案.
解:王浩同學(xué)能將手機(jī)放入卡槽DF內(nèi),
理由如下:作AD⊥BC于點(diǎn)D,
∵∠C=50°,AC=20,
∴AD=ACsin50°≈20×0.8=16,
CD=ACcos50°≈20×0.6=12,
∴DB=BC﹣CD=18﹣12=6,
∴AB===,
∴DF=AB=,
∵17=<,
∴王浩同學(xué)能將手機(jī)放入卡槽DF內(nèi).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動(dòng)時(shí),鐵環(huán)鉤保持與鐵環(huán)相切.將這個(gè)游戲抽象為數(shù)學(xué)問(wèn)題,如圖2.已知鐵環(huán)的半徑為25 cm,設(shè)鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點(diǎn)為M,鐵環(huán)與地面接觸點(diǎn)為A,∠MOA=α,且sinα=.
(1)求點(diǎn)M離地面AC的高度BM;
(2)設(shè)人站立點(diǎn)C與點(diǎn)A的水平距離AC=55 cm,求鐵環(huán)鉤MF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖,若點(diǎn)D在的邊AB上,且滿足,則稱滿足這樣條件的點(diǎn)為的“理想點(diǎn)”
如圖,若點(diǎn)D是的邊AB的中點(diǎn),,,試判斷點(diǎn)D是不是的“理想點(diǎn)”,并說(shuō)明理由;
如圖,在中,,,,若點(diǎn)D是的“理想點(diǎn)”,求CD的長(zhǎng);
如圖,已知平面直角坐標(biāo)系中,點(diǎn),,C為x軸正半軸上一點(diǎn),且滿足,在y軸上是否存在一點(diǎn)D,使點(diǎn)A,B,C,D中的某一點(diǎn)是其余三點(diǎn)圍成的三角形的“理想點(diǎn)”若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,∠ACB的平分線分別交AB、BD于M、N兩點(diǎn).若AM=,則線段BN的長(zhǎng)為( )
A.1B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線的頂點(diǎn)A的坐標(biāo)為(1,4),拋物線與x軸相交于B,C兩點(diǎn),與y軸交于點(diǎn)D(0,3).
(1)求拋物線的表達(dá)式以及點(diǎn)B的坐標(biāo);
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得DP+CP最小,如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
(3)點(diǎn)Q是線段BD上方拋物線上的一個(gè)動(dòng)點(diǎn).過(guò)點(diǎn)Q作x軸的垂線,交線段BD于點(diǎn)E,再過(guò)點(diǎn)Q作QF∥x軸交拋物線于點(diǎn)F,連結(jié)EF,請(qǐng)問(wèn)是否存在點(diǎn)Q使△QEF為等腰直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有4個(gè)分別標(biāo)有數(shù)1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機(jī)摸出一個(gè)小球記下數(shù)為x,小穎在剩下的3個(gè)球中隨機(jī)摸出一個(gè)小球記下數(shù)為y,這樣確定了點(diǎn)P的坐標(biāo)(x,y).
(1)小紅摸出標(biāo)有數(shù)3的小球的概率是多少?.
(2)請(qǐng)你用列表法或畫(huà)樹(shù)狀圖法表示出由x,y確定的點(diǎn)P(x,y)所有可能的結(jié)果.
(3)求點(diǎn)P(x,y)在函數(shù)y=﹣x+5圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)B的坐標(biāo)為(1,0),C(0,-3)
(1) 求拋物線的解析式;
(2) 若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.
(3) 若點(diǎn)E在x軸上,點(diǎn)P在拋物線上,是否存在以A、C、E、P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正比例函數(shù)y=kx(k≠0)的圖象經(jīng)過(guò)點(diǎn)P(2,3),則該函數(shù)的圖象經(jīng)過(guò)的點(diǎn)是( )
A.(3,2)B.(1,6)C.(2,3)D.(1,6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,點(diǎn)E在AD邊上且不與點(diǎn)A和點(diǎn)D重合,點(diǎn)O是對(duì)角線BD的中點(diǎn),當(dāng)△OED是等腰三角形時(shí),AE的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com