如圖所示,每一個(gè)小方格都是邊長(zhǎng)為1的單位正方形.△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,以點(diǎn)O為坐標(biāo)原點(diǎn)建立平 面直角坐標(biāo)系.
(1)點(diǎn)P(m,n)為AB邊上一點(diǎn),平移△ABC得到△A1B1C1,使得點(diǎn)P的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為(m-5,n+1),請(qǐng)?jiān)趫D中畫出△A1B1C1,并寫出A點(diǎn)的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為
(-1,4)
(-1,4)
;
(2)請(qǐng)?jiān)趫D中畫出將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°后的△A2B2C2,并寫出A點(diǎn)的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為
(-4,-3)
(-4,-3)

(3)點(diǎn)B2向上平移t個(gè)單位落在△A1B1C1內(nèi),則t的范圍為
13
3
<t<
11
2
13
3
<t<
11
2
分析:(1)先根據(jù)點(diǎn)P、P1的坐標(biāo)確定出平移規(guī)律,然后找出點(diǎn)A、B、C平移后的對(duì)應(yīng)點(diǎn)A1、B1、C1的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)A1的坐標(biāo);
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°后的對(duì)應(yīng)點(diǎn)A2、B2、C2的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)A2的坐標(biāo);
(3)根據(jù)網(wǎng)格結(jié)構(gòu)求出點(diǎn)B2到B1C1,A1B1與x=-2的交點(diǎn)的距離,然后寫出t的取值范圍即可.
解答:解:(1)∵P(m,n)平移后的對(duì)應(yīng)點(diǎn)為P1(m-5,n+1),
∴平移規(guī)律為向左平移5個(gè)單位,向上平移1個(gè)單位,
△A1B1C1如圖所示,點(diǎn)A1(-1,4);

(2)△A2B2C2如圖所示,A2(-4,-3);

(3)點(diǎn)B2到B1C1與x=-2的交點(diǎn)的距離為:4+
1
3
=
13
3
,
到A1B1與x=-2的交點(diǎn)的距離為:5+
1
2
=
11
2

所以,
13
3
<t<
11
2

故答案為:(-1,4);(-4,-3);
13
3
<t<
11
2
點(diǎn)評(píng):本題考查了利用旋轉(zhuǎn)變換作圖,利用平移變換作圖,熟練掌握網(wǎng)格結(jié)構(gòu),準(zhǔn)確找出對(duì)應(yīng)點(diǎn)的位置是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)六個(gè)面上分別標(biāo)有1,1,2,3,3,5六個(gè)數(shù)字的均勻六方體表面如圖所示,擲這個(gè)六方體一次,記朝上一面的數(shù)為平面直角坐標(biāo)系中某個(gè)點(diǎn)的橫坐標(biāo),朝下一面的數(shù)為該點(diǎn)的縱坐標(biāo).按照這樣的規(guī)定,每擲一次該六方體,就能得到平面內(nèi)的一個(gè)點(diǎn)的坐標(biāo).已知小明前兩次擲得的兩個(gè)點(diǎn)能確定一條直線l,且這條直線l經(jīng)過(guò)點(diǎn)(4,7).那么,他第三次擲得的點(diǎn)也在這條直線上的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

六個(gè)面上分別標(biāo)有1,1,2,3,3,5六個(gè)數(shù)字的均勻六方體表面如圖所示,擲這個(gè)六方體一次,記朝上一面的數(shù)為平面直角坐標(biāo)系中某個(gè)點(diǎn)的橫坐標(biāo),朝下一面的數(shù)為該點(diǎn)的縱坐標(biāo).按照這樣的規(guī)定,每擲一次該六方體,就能得到平面內(nèi)的一個(gè)點(diǎn)的坐標(biāo).已知小明前兩次擲得的兩個(gè)點(diǎn)能確定一條直線l,且這條直線l經(jīng)過(guò)點(diǎn)(4,7).那么,他第三次擲得的點(diǎn)也在這條直線上的概率是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年福建省南平市武夷山市朱子學(xué)校九年級(jí)(下)第三次月考數(shù)學(xué)試卷(解析版) 題型:填空題

六個(gè)面上分別標(biāo)有1,1,2,3,3,5六個(gè)數(shù)字的均勻六方體表面如圖所示,擲這個(gè)六方體一次,記朝上一面的數(shù)為平面直角坐標(biāo)系中某個(gè)點(diǎn)的橫坐標(biāo),朝下一面的數(shù)為該點(diǎn)的縱坐標(biāo).按照這樣的規(guī)定,每擲一次該六方體,就能得到平面內(nèi)的一個(gè)點(diǎn)的坐標(biāo).已知小明前兩次擲得的兩個(gè)點(diǎn)能確定一條直線l,且這條直線l經(jīng)過(guò)點(diǎn)(4,7).那么,他第三次擲得的點(diǎn)也在這條直線上的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年12月湖南省株洲市初三數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:填空題

六個(gè)面上分別標(biāo)有1,1,2,3,3,5六個(gè)數(shù)字的均勻六方體表面如圖所示,擲這個(gè)六方體一次,記朝上一面的數(shù)為平面直角坐標(biāo)系中某個(gè)點(diǎn)的橫坐標(biāo),朝下一面的數(shù)為該點(diǎn)的縱坐標(biāo).按照這樣的規(guī)定,每擲一次該六方體,就能得到平面內(nèi)的一個(gè)點(diǎn)的坐標(biāo).已知小明前兩次擲得的兩個(gè)點(diǎn)能確定一條直線l,且這條直線l經(jīng)過(guò)點(diǎn)(4,7).那么,他第三次擲得的點(diǎn)也在這條直線上的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年安徽省蕪湖市南陵縣實(shí)驗(yàn)初中九年級(jí)(上)第四次月考數(shù)學(xué)試卷(解析版) 題型:填空題

六個(gè)面上分別標(biāo)有1,1,2,3,3,5六個(gè)數(shù)字的均勻六方體表面如圖所示,擲這個(gè)六方體一次,記朝上一面的數(shù)為平面直角坐標(biāo)系中某個(gè)點(diǎn)的橫坐標(biāo),朝下一面的數(shù)為該點(diǎn)的縱坐標(biāo).按照這樣的規(guī)定,每擲一次該六方體,就能得到平面內(nèi)的一個(gè)點(diǎn)的坐標(biāo).已知小明前兩次擲得的兩個(gè)點(diǎn)能確定一條直線l,且這條直線l經(jīng)過(guò)點(diǎn)(4,7).那么,他第三次擲得的點(diǎn)也在這條直線上的概率是   

查看答案和解析>>

同步練習(xí)冊(cè)答案