已知二次函數(shù)y=kx2+(2k-1)x-1與x軸交點的橫坐標為x1,x2(x1<x2),則對于下列結(jié)論:
①當x=-2時,y=1;
②當x>x2時,y>0;
③方程y=kx2+(2k-1)x-1=0有兩個不相等的實數(shù)根x1,x2
④x2-x1=
1+4k2
k
,
其中所有正確的結(jié)論是
 
(只需按順序填寫序號,答案格式如:①②③④).
分析:①把x=2代入函數(shù)即可知,②要考慮兩種情況k>0和k<0,所以錯誤,③只要判斷△的情況即可,④根據(jù)韋達定理即可判斷.
解答:解:①把當x=-2代入函數(shù)得4k-2(2k-1)-1=1,正確;
②當k<0時,當x>x2時,y<0,錯誤;
③∵二次函數(shù)y=kx2+(2k-1)x-1與x軸有兩個不同的交點,
∴方程y=kx2+(2k-1)x-1=0有兩個不相等的實數(shù)根x1、x2;正確
④x2-x1=
1+4k2
k
中,k的符號可能為負,應(yīng)為|k|,錯誤.
故選①、③.
點評:本題難度較大,考查了函數(shù)與方程的關(guān)系,以及根的判別式等內(nèi)容,需仔細解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點(A點在原點左側(cè),B點在原點右側(cè)),與y軸交于C點.若AB=4,OB>OA,且OA、OB是方程x2+kx+3=0的兩根.
(1)請求出A,B兩點的坐標;
(2)若點O到BC的距離為
3
2
2
,求此二次函數(shù)的解析式;
(3)若點P的橫坐標為2,且△PAB的外心為M(1,1),試判斷點P是否在(2)中所求的二次函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2-2ax+3(a<0)的圖象與x軸的負半軸交于點A,與y軸的正半軸交于精英家教網(wǎng)點B,頂點為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過點A、點B.
(1)求一次函數(shù)的解析式;
(2)求頂點P的坐標;
(3)平移直線AB使其過點P,如果點M在平移后的直線上,且tan∠OAM=
32
,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C,其頂點的橫坐標為1,且過點(2,3)和(-3,-12).
(1)求此二次函數(shù)的表達式;
(2)若直線l:y=kx(k≠0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得△BOD∽△BAC?若存在,求出該直線的函數(shù)表達式及點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+3圖象的對稱軸為直線x=1.
(1)用含a的代數(shù)式表示b;
(2)若一次函數(shù)y=kx+5的圖象經(jīng)過點A(4,1)及這個二次函數(shù)圖象的頂點,求二次函數(shù)y=ax2+bx+3的解析式;
(3)在(2)的條件下,若點P(T,2T)在二次函數(shù)y=ax2+bx+3圖象上,則點P叫作圖象上的2倍點,求出這個二次函數(shù)圖象上的所有2倍點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過三點A(-1,0),B(3,0),C(0,3),它的頂點為M,又正比例函數(shù)y=kx的圖象與二次函數(shù)相交于兩點D、E,且P是線段DE的中點.
(1)求該二次函數(shù)的解析式,并求函數(shù)頂點M的坐標;
(2)已知點E(2,3),且二次函數(shù)的函數(shù)值大于正比例函數(shù)值時,試根據(jù)函數(shù)圖象求出符合條件的自變量x的取值范圍;
(3)當k為何值時且0<k<2,求四邊形PCMB的面積為
93
16

(參考公式:已知兩點D(x1,y1),E(x2,y2),則線段DE的中點坐標為(
x1+x2
2
,
y1+y2
2
)

查看答案和解析>>

同步練習(xí)冊答案