【題目】將下列推理過程填寫完整.
(1)如圖1,已知∠B+∠BED+∠D=360°,求證AB∥CD. 證明:過E點(diǎn)作EF∥CD(過直線外一點(diǎn)有且只有一條直線與已知直線平行)
∵EF∥CD,
∴∠D+∠DEF=180°,()
∵∠B+∠BED+∠D=360°,(已知)
∴∠B+∠BEF=∠B+∠BED+∠D﹣(∠D+∠DEF)=360°﹣180°=180°
∴EF∥AB,()
∴∥ , (平行于同一直線的兩直線平行)
(2)如圖2,已知∠BED=∠B+∠D,求證AB∥CD. 證明:過E點(diǎn)作EF∥CD(過直線外一點(diǎn)有且只有一條直線與已知直線平行)
∵EF∥CD,
∴∠D=∠FED,()
∵∠BED=∠B+∠D(已知)
∴∠B=∠BEF﹣∠D=∠BED﹣∠FED=∠BEF,
∴∥ , ()
∴∥ . (平行于同一直線的兩直線平行)
【答案】
(1)兩直線平行,同旁內(nèi)角互補(bǔ);同旁內(nèi)角互補(bǔ),兩直線平行;AB;CD
(2)兩直線平行,內(nèi)錯(cuò)角相等;AB;EF;內(nèi)錯(cuò)角相等,兩直線平行;AB;CD.
【解析】(1.)證明:過E點(diǎn)作EF∥CD(過直線外一點(diǎn)有且只有一條直線與已知直線平行) ∵EF∥CD,
∴∠D+∠DEF=180°,( 兩直線平行,同旁內(nèi)角互補(bǔ) )
∵∠B+∠BED+∠D=360°,( 已知 )
∴∠B+∠BEF=∠B+∠BED+∠D﹣(∠D+∠DEF )=360°﹣180°=180°,
∴EF∥AB,( 同旁內(nèi)角互補(bǔ),兩直線平行 )
∴AB∥CD,( 平行于同一直線的兩直線平行);
所以答案是:兩直線平行,同旁內(nèi)角互補(bǔ);同旁內(nèi)角互補(bǔ),兩直線平行;AB;CD;
(2.)證明:過E點(diǎn)作EF∥CD(過直線外一點(diǎn)有且只有一條直線與已知直線平行)
∵EF∥CD,
∴∠D=∠FED,( 兩直線平行,內(nèi)錯(cuò)角相等 )
∵∠BED=∠B+∠D,(已知)
∴∠B=∠BED﹣∠D=∠BED﹣∠FED=∠BEF,
∴AB∥EF,( 內(nèi)錯(cuò)角相等,兩直線平行 )
∴AB∥CD,( 平行于同一直線的兩直線平行).
所以答案是:兩直線平行,內(nèi)錯(cuò)角相等;AB;EF;內(nèi)錯(cuò)角相等,兩直線平行;AB;CD.
【考點(diǎn)精析】通過靈活運(yùn)用平行公理和平行線的判定,掌握平行公理――平行線的存在性與惟一性;經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行;如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行;同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面去括號(hào)正確的是( 。
A. x2﹣(2y2﹣x+z)=x2﹣2y2﹣x+z
B. 2a+(﹣6x+4y﹣2)=2a﹣6x+4y﹣2
C. 3a﹣[6a﹣(4a﹣1)]=3a﹣6a﹣4a+1
D. ﹣(2x2﹣y)+(z+1)=﹣2x2﹣y﹣z﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多項(xiàng)式A減去多項(xiàng)式2x2﹣3x+5,糊涂同學(xué)將減號(hào)抄成了加號(hào),運(yùn)算結(jié)果為﹣x2﹣3x+4,求原題的正確結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按如圖所示的方式擺放餐桌和椅子,用x來表示餐桌的張數(shù),用y來表示可坐人數(shù).
(1)題中有幾個(gè)變量?
(2)你能寫出兩個(gè)變量之間的關(guān)系嗎?
(3)按如圖所示的方式擺放餐桌和椅子,100張餐桌可以坐多少人?
(4)按如圖所示的方式擺放餐桌和椅子,能否剛好坐80人?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC的場(chǎng)地上,∠B=90°,AB=BC,∠CAB的平分線AE交BC于點(diǎn)E.甲、乙兩人同時(shí)從A處出發(fā),以相同的速度分別沿AC和A→B→E線路前進(jìn),甲的目的地為C,乙的目的地為E.請(qǐng)你判斷一下,甲、乙兩人誰先到達(dá)各自的目的地?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于A,B兩點(diǎn),且交y軸于點(diǎn)C.已知點(diǎn)A(1,4),點(diǎn)B在第三象限,且點(diǎn)B的橫坐標(biāo)為t(t<﹣1).
(1)求反比例函數(shù)的解析式;
(2)用含t的式子表示k,b;
(3)若△AOB的面積為3,求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若多項(xiàng)式ax2+2x-y2-7與x2-bx-3y2+1的差與x的取值無關(guān),則a-b的值為( )
A. 1 B. -1 C. 3 D. -3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋中裝有5個(gè)黃球,13個(gè)黑球和22個(gè)紅球,它們除顏色外都相同.
(1)小明和小紅玩摸球游戲,規(guī)定每人摸球后再將摸到的球放回去為一次游戲.若摸到黑球小明獲勝,摸到黃球小紅獲勝,這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說明你的理由;
(2)現(xiàn)在裁判想從袋中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,使得這個(gè)游戲?qū)﹄p方公平,問取出了多少黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若9x2 -ax +4是一個(gè)完全平方式,則a等于( )
A. 12 B. -12 C. 12或-12 D. 6或-6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com