如圖,△ABC與△ABD中,AD與BC相交于O點,∠1=∠2,請你添加一個條件(不再添加其它線段,不再標(biāo)注或使用其他字母),使AC=BD,并給出證明.
你添加的條件是: .
證明: .
【考點】全等三角形的判定與性質(zhì).
【分析】要使AC=BD,可以證明△ACB≌△BDA或者△ACO≌△BDO從而得到結(jié)論.
【解答】解:添加條件例舉:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.
證明:(1)如果添加條件是AD=BC時,
∵BC=AD,∠2=∠1,AB=BA,
在△ABC與△BAD中,
,
∴△ABC≌△BAD,
∴AC=BD;
(2)如果添加條件是OC=OD時,
∵∠1=∠2
∴OA=OB
∴OA+OD=OB+OD
∴BC=AD
又∵∠2=∠1,AB=BA
在△ABC與△BAD中,,
∴△ABC≌△BAD,
∴AC=BD;
(3)如果添加條件是∠C=∠D時,
∵∠2=∠1,AB=BA,
在△ABC與△BAD中,
,
∴△ABC≌△BAD,
∴AC=BD;
(4)如果添加條件是∠CAO=∠DBC時,
∵∠1=∠2,
∴∠CAO+∠1=∠DBC+∠2,
∴∠CAB=∠DBA,
又∵AB=BA,∠2=∠1,
在△ABC與△BAD中,,
∴△ABC≌△BAD,
∴AC=BD.
故答案為:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.
【點評】本題考查了全等三角形的判定及性質(zhì);判定兩個三角形全等的方法有:SSS,SAS,ASA,AAS,本題已知一邊一角,所以可以尋找夾這個角的另外一邊或者是另外兩個角.
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0)三點.
(1)求拋物線的解析式;
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標(biāo)為m,△AMB的面積為S.
求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點P是拋物線上的動點,點Q是直線y=﹣x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0)兩點,交y軸于點C,點D是線段OB上一動點,連接CD,將線段CD繞點D順時針旋轉(zhuǎn)90°得到線段DE,過點E作直線l⊥x軸于H,過點C作CF⊥l于F.
(1)求拋物線解析式;
(2)如圖2,當(dāng)點F恰好在拋物線上時,求線段OD的長;
(3)在(2)的條件下:
①連接DF,求tan∠FDE的值;
②試探究在直線l上,是否存在點G,使∠EDG=45°?若存在,請直接寫出點G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠C=90°,AC=BC=2,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,下列結(jié)論:①△DFE是等腰直角三角形;②四邊形CEDF的周長不變;③點C到線段EF的最大距離為1.其中正確的結(jié)論有 .(填寫所有正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com