【題目】用火柴棒按如圖所示的方式擺圖形,按照這樣的規(guī)律繼續(xù)擺下去,則第100個圖形需要火柴棒________根.
【答案】501
【解析】
仔細觀察圖形,數(shù)一數(shù)①、②、③圖中每個圖形各有幾個六邊形,有幾根火柴棒公用,其由幾根火柴棒組成;則根據(jù)規(guī)律可得第100個圖形由100個六邊形組成,有99根火柴棒公用即可解答.
仔細觀察圖形可知:
圖形①為1個六邊形,有1-1=0根火柴棒公用,其由6×1-0=6根火柴棒組成;
圖形②為2個六邊形,有2-1=1根火柴棒公用,其由6×2-1=11根火柴棒組成;
圖形③為3個六邊形,有3-1=2根火柴棒公用,其由6×3-2=16根火柴棒組成;
……
可猜想:第10個圖形由100個六邊形,有100-1=99根公用,其由6×100-99=501根火柴棒組成;
故第100個圖形需火柴棒501根.
故答案為:501.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=(m≠0,x<0)的圖象交于點A(﹣3,1)和點C,與y軸交于點B,△AOB的面積是6.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)當x<0時,比較y1與y2的大。
(3)若點P(x,y)也在反比例函數(shù)y2=的圖象上,當﹣4≤x≤﹣時,求函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,巨型廣告牌AB背后有一看臺CD,臺階每層高0.3米,且AC=17米,現(xiàn)有一只小狗睡在臺階的FG這,層上曬太陽,設太陽光線與水平地面的夾角為α,當α=60°時,測得廣告牌AB在地面上的影長AE=10米,過了一會,當α=45°,問小狗在FG這層是否還能曬到太陽?請說明理由(取1.73).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下面的材料,再解答后面的各題:
現(xiàn)代社會對保密要求越來越高,密碼正在成為人們生活的一部分.有一種密碼的明文(真實文)按計算機鍵盤字母排列分解,其中Q,W,E,……,N,M這26個字母依次對應1,2,3,……,25,26這26個自然數(shù)(見下表).
Q | W | E | R | T | Y | U | I | O | P | A | S | D |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
F | G | H | J | K | L | Z | X | C | V | B | N | M |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
給出一個變換公式:
將明文轉(zhuǎn)成密文,如:,即R變?yōu)?/span>L;,即A變?yōu)?/span>S.
將密文轉(zhuǎn)換成明文,如:,即X變?yōu)?/span>P;133×(13-8)-1=14,即D變?yōu)?/span>F.
(1)按上述方法將明文NET譯為密文.
(2)若按上方法將明文譯成的密文為DWN,請找出它的明文.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形OABC頂點B的坐標為(8,3),定點D的坐標為(12,0),動點P從點O出發(fā),以每秒2個單位長度的速度沿x軸的正方向勻速運動,動點Q從點D出發(fā),以每秒1個單位長度的速度沿x軸的負方向勻速運動,PQ兩點同時運動,相遇時停止.在運動過程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設運動時間為t秒.
(1)當t= 時,△PQR的邊QR經(jīng)過點B;
(2)設△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過定點E(5,0)作EF⊥BC,垂足為F,當△PQR的頂點R落在矩形OABC的內(nèi)部時,過點R作x軸、y軸的平行線,分別交EF、BC于點M、N,若∠MAN=45°,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為半圓O的直徑,C為BA延長線上一點,CD切半圓O于點D。連結(jié)OD,作BE⊥CD于點E,交半圓O于點F。已知CE=12,BE=9,
(1)求證:△COD∽△CBE;
(2)求半圓O的半徑的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=6,點P、點E分別是邊AB、BC上的動點,連結(jié)DP、PE.將△ADP與△BPE分別沿DP與PE折疊,點A與點B分別落在點A′,B′處.
(1) 當點P運動到邊AB的中點處時,點A′與點B′重合于點F處,過點C作CK⊥EF于K,求CK的長;
(2) 當點P運動到某一時刻,若P,A',B'三點恰好在同一直線上,且A'B'=4 ,試求此時AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點O在直線MN上,過點O作射線OP,使∠MOP=130°,現(xiàn)將一塊直角三角板的直角頂點始終放在點O處.
(1)如圖①,當三角板的一邊OA在射線OM上,另一邊OB在直線MN的上方時,∠POB的度數(shù) 是 ;
(2)若將三角板繞點O旋轉(zhuǎn)至圖②所示的位置,此時OB恰好平分∠PON,則∠BOP 的度數(shù)為 ;∠AOM 的度數(shù)為 ;
(3)若將三角板繞點O旋轉(zhuǎn)至圖③所示位置,此時OA在∠PON 的內(nèi)部,
①若 OP 所在的直線平分∠MOB,則∠POA 的度數(shù)為 ;
②∠BON-∠POA的度數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com