【題目】過九邊形的一個頂點有______條對角線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在以下現(xiàn)象中,屬于平移的是( 。
①在擋秋千的小朋友;②打氣筒打氣時,活塞的運動;③鐘擺的擺動;④傳送帶上,瓶裝飲料的移動.
A.①②
B.①③
C.②③
D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是的邊OB上的一點。
過點P畫OA的垂線,垂足為H;
過點P畫OB的垂線,交OA于點C;
線段PH的長度是點P到 的距離,_____ 是點C到直線OB的距離。因為直線外一點到直線上各點連接的所有線段中,垂線段最短,所以線段PC、PH、OC這三條線段大小關(guān)系是 。(用“<”號連接)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA=OB=OC=6,過點A的直線AD交BC于點D,交y軸與點G,△ABD的面積為△ABC面積的.
(1)直接寫出點D的坐標(biāo);
(2)過點C作CE⊥AD,交AB交于F,垂足為E.
①求證:OF=OG;(3分) ②求點F的坐標(biāo).
(3)在(2)的條件下,在第一象限內(nèi)是否存在點P,使△CFP為等腰直角三角形,若存在,直接寫出點P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點.
(1)已知點A(3,1),連結(jié)OA,作如下探究:
探究一:平移線段OA,使點O落在點B.設(shè)點A落在點C,若點B的坐標(biāo)為(1,2),請在圖1中作出BC,點C的坐標(biāo)是_________;
探究二:將線段OA繞點O逆時針旋轉(zhuǎn)90°,設(shè)點A落在點D.則點D的坐標(biāo)是_______.
(2) 已知四點O(0,0),A (a,b), C,B(c,d),順次連結(jié)O,A,C,B.
若所得到的四邊形是正方形,請直接寫出a,b,c,d應(yīng)滿足的關(guān)系式是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOC=90°,∠BOC=60°,OE平分∠BOC,OD平分∠AOB.求:
(1)∠DOE度數(shù);
(2)若∠BOC=α(0<α<90°),其他條件不變,∠DOE的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 (1)、(2)都是幾何體的平面展開圖,先想一想,再折一折,然后說出圖 (1)、(2)折疊后的幾何體名稱、底面形狀、側(cè)面形狀、棱數(shù)、側(cè)棱數(shù)與頂點數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
④<a<
⑤b>c.
其中含所有正確結(jié)論的選項是( )
A.①③ B.①③④ C.②④⑤ D.①③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com