【題目】如圖,在ABC中,AB=AC,ABC、ACB的平分線BD,CE相交于O點,且BDAC于點D,CEAB于點E.某同學分析圖形后得出以下結(jié)論:BCDCBE;BADBCD;BDACEA;BOECOD; ACEBCE;上述結(jié)論一定正確的是

A. ①②③ B. ②③④ C. ①③⑤ D. ①③④

【答案】D

【解析】根據(jù)等腰三角形的性質(zhì)及角平分線定義可得有關角之間的相等關系.運用三角形全等的判定方法AASASA判定全等的三角形.

解:AB=AC,∴∠ABC=ACB

BD平分ABC,CE平分ACB,

∴∠ABD=CBD=ACE=BCE

∴①△BCD≌△CBE ASA);

③△BDA≌△CEA ASA);

④△BOE≌△COD AASASA).

故選D

此題考查等腰三角形的性質(zhì)和全等三角形的判定,難度不大.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】把一副三角板按如圖放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜邊AC=BD=10,若將三角板DEB繞點B逆時針旋轉(zhuǎn)45°得到△D′E′B,則點A在△D′E′B的(

A.內(nèi)部
B.外部
C.邊上
D.以上都有可能

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名射擊運動員在某次訓練中各射擊10發(fā)子彈,成績?nèi)绫恚?

8

9

7

9

8

6

7

8

10

8

6

7

9

7

9

10

8

7

7

10

=8,S2=1.8,根據(jù)上述信息完成下列問題:

(1)將甲運動員的折線統(tǒng)計圖補充完整;
(2)乙運動員射擊訓練成績的眾數(shù)是 , 中位數(shù)是
(3)求甲運動員射擊成績的平均數(shù)和方差,并判斷甲、乙兩人本次射擊成績的穩(wěn)定性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩組卡片共5張,A中三張分別寫有數(shù)字2,4,6,B中兩張分別寫有3,5,它們除數(shù)字外沒有任何區(qū)別.
(1)隨機地從A中抽取一張,求抽到數(shù)字為2的概率;
(2)隨機地分別從A、B中各抽取一張,請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個游戲規(guī)則:若所選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(某進口專營店銷售一種“特產(chǎn)”,其成本價是20元/千克,根據(jù)以往的銷售情況描出銷量y(千克/天)與售價x(元/千克)的關系,如圖所示.

(1)試求出y與x之間的一個函數(shù)關系式;
(2)利用(1)的結(jié)論:
求每千克售價為多少元時,每天可以獲得最大的銷售利潤.
②進口產(chǎn)品檢驗、運輸?shù)冗^程需耗時5天,該“特產(chǎn)”最長的保存期為一個月(30天),若售價不低于30元/千克,則一次進貨最多只能多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果兩個三角形的兩條邊和其中一邊上的高對應相等,那么這兩個三角形的第三邊所對的角的關系是________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD和四邊形DEFG為正方形,點E在線段DE上,點A,D,G在同一直線上,且AD=3,DE=1,連接AC,CG,AE,并延長AE交CG于點H.

(1)求sin∠EAC的值.
(2)求線段AH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個18米高的樓頂上有一信號塔DC,李明同學為了測量信號塔的高度,在地面的A處測的信號塔下端D的仰角為30°,然后他正對塔的方向前進了18米到達地面的B處,又測得信號塔頂端C的仰角為60°,CD⊥AB與點E,E、B、A在一條直線上.請你幫李明同學計算出信號塔CD的高度(結(jié)果保留整數(shù),≈1.7,≈1.4 ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB,BC,CD分別與⊙O相切于E,F(xiàn),G.且AB∥CD.BO=6cm,CO=8cm.
(1)求證:BO⊥CO;
(2)求BE和CG的長.

查看答案和解析>>

同步練習冊答案