【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=________
【答案】78°.
【解析】
分別過K、H作AB的平行線MN和RS,根據(jù)平行線的性質和角平分線的性質可用∠ABK和∠DCK分別表示出∠H和∠K,從而可找到∠H和∠K的關系,結合條件可求得∠K.
如圖,分別過K、H作AB的平行線MN和RS,
∵AB∥CD,
∴AB∥CD∥RS∥MN,
∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,
∴∠BHC=180°-∠RHB-∠SHC=180°-(∠ABK+∠DCK),
∠BKC=180°-∠NKB-∠MKC=180°-(180°-∠ABK)-(180°-∠DCK)=∠ABK+∠DCK-180°,
∴∠BKC=360°-2∠BHC-180°=180°-2∠BHC,
又∠BKC-∠BHC=27°,
∴∠BHC=∠BKC-27°,
∴∠BKC=180°-2(∠BKC-27°),
∴∠BKC=78°,
故答案為:78°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE,DF分別是∠ABC,∠ADC的平分線.
(1)∠1與∠2有什么關系,為什么?
(2)BE與DF有什么關系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為鼓勵居民節(jié)約用水,某市決定對居民用水收費實行“階梯價”,即當每月用水量不超過15噸時(包括15噸),采用基本價收費;當每月用水量超過15噸時,超過部分每噸采用市場價收費.小蘭家4、5月份的用水量及收費情況如下表:
月份 | 用水量(噸) | 水費(元) |
4 | 22 | 51 |
5 | 20 | 45 |
(1)求該市每噸水的基本價和市場價.
(2)設每月用水量為n噸,應繳水費為m元,請寫出m與n之間的函數(shù)關系式.
(3)小蘭家6月份的用水量為26噸,則她家要繳水費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B坐標為(6,0),點C坐標為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.
(Ⅰ)求拋物線的解析式及點D的坐標;
(Ⅱ)點F是拋物線上的動點,當∠FBA=∠BDE時,求點F的坐標;
(Ⅲ)若點M是拋物線上的動點,過點M作MN∥x軸與拋物線交于點N,點P在x軸上,點Q在坐標平面內(nèi),以線段MN為對角線作正方形MPNQ,請寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為正方形ABCD對角線的交點,點E,F(xiàn)分別在DA和CD的延長線上,且AE=DF,連接BE,AF,延長FA交BE于G.
(1)試判斷FG與BE的位置關系,并證明你的結論;
(2)連接OG,求∠OGF的度數(shù);
(3)若AE= ,tan∠ABG= ,求OG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,△ABC三個頂點的坐標分別為A(-2,4),B(-2,1),C(-5,2).
(1)請畫出△ABC關于x軸對稱的△A1B1C1;
(2)將△A1B1C1的三個頂點的橫坐標與縱坐標同時乘-2,得到對應的點A2,B2,C2,請畫出△A2B2C2;
(3)寫出△A1B1C1的面積;△A2B2C2的面積.(不寫解答過程,直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OE是∠AOC的平分線,∠BOC=130°,∠BOF=140°,則∠EOF的度數(shù)為( )
A. 95° B. 65°
C. 50° D. 40°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A(x,y),點A′(x′,y′),若x′=x+m,y′=y+n,即點A′(x+m,y+n),則表示點A到點A′的一個平移.例如:點A(x,y),點A′(x′,y′),若x′=x+1,y′=y-2,則表示點A向右平移1個單位長度,再向下平移2個單位長度得到點A′.
根據(jù)上述定義,探究下列問題:
(1)已知點A(x,y),A′(x-3,y),則線段AA′的長度是多少;
(2)已知點A(x,y),A′(x+2,y-1),則線段AA′的長度是多少;
(3)長方形AOCB在平面直角坐標系中的位置如圖所示,A(0,2),C(4,0),點A′(x′,y′),若x′=x+m,y′=y-2m(m均為正數(shù)),點A′(x′,y′)能否在△OCB的直角邊上?若能,求m的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF;
(1)求證:Rt△ABE≌Rt△CBF;
(2)求證:AB=CE+BF;
(3)若∠CAE=30°,求∠ACF度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com