【題目】等腰直角△ABO在平面直角坐標(biāo)系中如圈所示,點(diǎn)O為坐標(biāo)原點(diǎn),直角頂點(diǎn)A的坐標(biāo)為(2,4),點(diǎn)B在反比例函數(shù)y=(x>0)的圖象上,則k的值為_____.
【答案】12
【解析】
過(guò)A作AC⊥x軸于C,過(guò)B作BD⊥AC于D,則∠ACO=∠BDA=90°,根據(jù)等腰三角形性質(zhì)證△AOC≌△BAD(AAS),求出B的坐標(biāo),再代入解析式可得;
解:如圖,過(guò)A作AC⊥x軸于C,過(guò)B作BD⊥AC于D,則∠ACO=∠BDA=90°,
∵△ABO是等腰直角三角形,
∴AO=BA,∠BAO=90°,
∴∠OAC+∠BAD=∠ABD+∠BAD=90°,
∴∠OAC=∠ABD,
∴△AOC≌△BAD(AAS),
∴AD=OC=2,BD=AC=4,
∴點(diǎn)B的坐標(biāo)為(6,2),
∴2=,
解得k=12,
故答案為:12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線上有兩點(diǎn)M(m+1,a)、N(m,b).
(1)當(dāng)a=-1,m=1時(shí),求拋物線的解析式;
(2)用含a、m的代數(shù)式表示b和c;
(3)當(dāng)a<0時(shí),拋物線滿足,,,
求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰Rt△ABC,∠BAC=90°,BC=,E為AB上一點(diǎn),以CE為斜邊作等腰Rt△CDE,連接AD,若∠ACE=30°,則AD的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“賞中華詩(shī)詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國(guó)詩(shī)詞大會(huì)”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)默寫50首古詩(shī)詞,若每正確默寫出一首古詩(shī)詞得2分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績(jī)x分 | 頻數(shù)人數(shù) |
第1組 | 6 | |
第2組 | 8 | |
第3組 | 14 | |
第4組 | a | |
第5組 | 10 |
請(qǐng)結(jié)合圖表完成下列各題:
求表中a的值; 頻數(shù)分布直方圖補(bǔ)充完整;
若測(cè)試成績(jī)不低于80分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是多少?
第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對(duì)抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.電路圖上有四個(gè)開(kāi)關(guān)A、B、C、D和一個(gè)小燈泡,閉合開(kāi)關(guān)D或同時(shí)閉合開(kāi)關(guān)A,B,C都可使小燈泡發(fā)光.
(1)任意閉合其中一個(gè)開(kāi)關(guān),則小燈泡發(fā)光的概率等于 ;
(2)任意閉合其中兩個(gè)開(kāi)關(guān),請(qǐng)用畫樹(shù)狀圖或列表的方法求出小燈泡發(fā)光的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形ABCD的對(duì)角線相交于點(diǎn)M,△ABM的外接圓交AD于點(diǎn)E且圓心O恰好落在AD邊上,連接ME,若∠BCD=45°
(1)求證:BC為⊙O切線;
(2)求∠ADB的度數(shù);
(3)若ME=1,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2tx+t2﹣2t+4=0.
(1)當(dāng)t=3時(shí),解這個(gè)方程;
(2)若m,n是方程的兩個(gè)實(shí)數(shù)根,設(shè)Q=(m﹣2)(n﹣2),試求Q的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在頂點(diǎn)為P的拋物線y=a(x-h)2+k(a≠0)的對(duì)稱軸1的直線上取點(diǎn)A(h,k+),過(guò)A作BC⊥l交拋物線于B、C兩點(diǎn)(B在C的左側(cè)),點(diǎn)和點(diǎn)A關(guān)于點(diǎn)P對(duì)稱,過(guò)A作直線m⊥l.又分別過(guò)點(diǎn)B,C作直線BE⊥m和CD⊥m,垂足為E,D.在這里,我們把點(diǎn)A叫此拋物線的焦點(diǎn),BC叫此拋物線的直徑,矩形BCDE叫此拋物線的焦點(diǎn)矩形.
(1)直接寫出拋物線y=x2的焦點(diǎn)坐標(biāo)以及直徑的長(zhǎng).
(2)求拋物線y=x2-x+的焦點(diǎn)坐標(biāo)以及直徑的長(zhǎng).
(3)已知拋物線y=a(x-h)2+k(a≠0)的直徑為,求a的值.
(4)①已知拋物線y=a(x-h)2+k(a≠0)的焦點(diǎn)矩形的面積為2,求a的值.
②直接寫出拋物線y=x2-x+的焦點(diǎn)短形與拋物線y=x2-2mx+m2+1公共點(diǎn)個(gè)數(shù)分別是1個(gè)以及2個(gè)時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)拓展課《折疊矩形紙片》上,小林折疊矩形紙片ABCD進(jìn)行如下操作:①把△ABF翻折,點(diǎn)B落在CD邊上的點(diǎn)E處,折痕AF交BC邊于點(diǎn)F;②把△ADH翻折,點(diǎn)D落在AE邊長(zhǎng)的點(diǎn)G處,折痕AH交CD邊于點(diǎn)H.若AD=6,AB=10,則的值是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com