【題目】如圖是一個古代車輪的碎片,小明為求其外圓半徑,連結(jié)外圓上的兩點A、B,并使AB與車輪內(nèi)圓相切于點D,做CD⊥AB交外圓于點C.測得CD=10cm,AB=60cm,則這個車輪的外圓半徑為cm.
【答案】50
【解析】解:如圖,設(shè)點O為外圓的圓心,連接OA和OC,
∵CD=10cm,AB=60cm,
∴設(shè)半徑為r,則OD=r﹣10,
根據(jù)題意得:r2=(r﹣10)2+302 ,
解得:r=50,
所以答案是:50.
【考點精析】本題主要考查了勾股定理的概念和垂徑定理的推論的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧;推論2 :圓的兩條平行弦所夾的弧相等才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】折紙的思考.
用一張矩形紙片折等邊三角形.
第一步,對折矩形紙片ABCD(AB>BC)(圖①),使AB與DC重合,得到折痕EF,把紙片展平(圖②).
第二步,如圖③,再一次折疊紙片,使點C落在EF上的P處,并使折痕經(jīng)過點B,得到折痕BG,折出PB,PC,得到△PBC.
(1)說明△PBC是等邊三角形.
(2)如圖④,小明畫出了圖③的矩形ABCD和等邊三角形PBC,他發(fā)現(xiàn),在矩形ABCD中把△PBC經(jīng)過圖形變化,可以得到圖⑤中的更大的等邊三角形,請描述圖形變化的過程.
(3)已知矩形一邊長為3cm,另一邊長為a cm,對于每一個確定的a的值,在矩形中都能畫出最大的等邊三角形,請畫出不同情形的示意圖,并寫出對應(yīng)的a的取值范圍.
(4)用一張正方形鐵片剪一個直角邊長分別為4cm和1cm的直角三角形鐵片,求所需正方形鐵片的邊長的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系xOy中,O是坐標原點,點A是函數(shù)y= (x<0)圖象上一點,AO的延長線交函數(shù)y= (x>0,k是不等于0的常數(shù))的圖象于點C,點A關(guān)于y軸的對稱點為A′,點C關(guān)于x軸的對稱點為C′,交于x軸于點B,連結(jié)AB,AA′,A′C′.若△ABC的面積等于6,則由線段AC,CC′,C′A′,A′A所圍成的圖形的面積等于( )
A.8
B.10
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方成同學看到一則材料:甲開汽車,乙騎自行車從M地出發(fā)沿一條公路勻速前往N地.設(shè)乙行駛的時間為t(h),甲乙兩人之間的距離為y(km),y與t的函數(shù)關(guān)系如圖1所示. 方成思考后發(fā)現(xiàn)了如圖1的部分正確信息:乙先出發(fā)1h;甲出發(fā)0.5小時與乙相遇.
請你幫助方成同學解決以下問題:
(1)分別求出線段BC,CD所在直線的函數(shù)表達式;
(2)當20<y<30時,求t的取值范圍;
(3)分別求出甲,乙行駛的路程S甲 , S乙與時間t的函數(shù)表達式,并在圖2所給的直角坐標系中分別畫出它們的圖象;
(4)丙騎摩托車與乙同時出發(fā),從N地沿同一公路勻速前往M地,若丙經(jīng)過 h與乙相遇,問丙出發(fā)后多少時間與甲相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球.
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個球是黑球的概率是 ,求從袋中取出黑球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】研究幾何圖形,我們往往先給出這類圖形的定義,再研究它的性質(zhì)和判定. 定義:六個內(nèi)角相等的六邊形叫等角六邊形.
(1)研究性質(zhì) ①如圖1,等角六邊形ABCDEF中,三組正對邊AB與DE,BC與EF,CD與AF分別有什么位置關(guān)系?證明你的結(jié)論.
②如圖2,等角六邊形ABCDEF中,如果有AB=DE,則其余兩組正對邊BC與EF,CD與AF相等嗎?證明你的結(jié)論.
③如圖3,等角六邊形ABCDEF中,如果三條正對角線AD,BE,CF相交于一點O,那么三組正對邊AB與DE,BC與EF,CD與AF分別有什么數(shù)量關(guān)系?證明你的結(jié)論.
(2)探索判定 三組正對邊分別平行的六邊形,至少需要幾個內(nèi)角為120°,才能保證六邊形一定是等角六邊形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車,B騎電動車,圖中DE,OC分別表示A,B離開甲地的路程s(km)與時間t(h)的函數(shù)關(guān)系的圖象,根據(jù)圖象解答下列問題.
(1)A比B后出發(fā)幾個小時?B的速度是多少?
(2)在B出發(fā)后幾小時,兩人相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半徑為6cm的⊙O中,C、D為直徑AB的三等分點,點E、F分別在AB兩側(cè)的半圓上,∠BCE=∠BDF=60°,連接AE、BF,則圖中兩個陰影部分的面積為cm2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD內(nèi)兩點M、N,滿足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四邊形BMDN的面積是菱形ABCD面積的 ,則cosA= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com