如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2.C2的圖象與x軸交于A、B兩點(點A在點B的左側(cè)).
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點C,與拋物線C2交于點D,與拋物線C1交于點E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點F為對稱軸DE上任意一點,在拋物線C2上是否存在這樣的點G,使以O(shè)、B、F、G四點為頂點的四邊形是平行四邊形?如果存在,請求出點G的坐標(biāo);如果不存在,請說明理由.
(1)∵將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2,
∴拋物線C1的頂點(0,3)向右平移1個單位,再向下平移7個單位得到(1,-4).
∴拋物線C2的頂點坐標(biāo)為(1,-4).
∴拋物線C2的解析式為y=(x-1)2-4,
即y=x2-2x-3;

(2)證明:由x2-2x-3=0,
解得:x1=-1,x2=3,
∵點A在點B的左側(cè),
∴A(-1,0),B(3,0),AB=4.
∵拋物線C2的對稱軸為x=1,頂點坐標(biāo)D為(1,-4),
∴CD=4.AC=CB=2.
將x=1代入y=x2+3得y=4,
∴F(1,4),CE=CD.
∴四邊形ADBE是平行四邊形.
∵ED⊥AB,
∴四邊形ADBE是菱形.
S菱形ADBE=2×
1
2
×AB×CE=2×
1
2
×4×4=16.

(3)存在.分OB為平行四邊形的邊和對角線兩種情況:
①當(dāng)OB為平行四邊形的一邊時,如圖1,
設(shè)F(1,y),
∵OB=3,∴G1(-2,y)或G2(4,y).
∵點G在y=x2-2x-3上,
∴將x=-2代入,得y=5;將x=4代入,得y=5.
∴G1(-2,5),G2(4,5).
②當(dāng)OB為平行四邊形的一對角線時,如圖2,
設(shè)F(1,y),OB的中點M,過點G作GH⊥OB于點H,
∵OB=3,OC=1,∴OM=
3
2
,CM=
1
2

∵△CFM≌△HGM(AAS),∴HM=CM=
1
2
.∴OH=2.
∴G3(2,-y).
∵點G在y=x2-2x-3上,
∴將(2,-y)代入,得-y=-3,即y=3.
∴G3(2,-3).
綜上所述,在拋物線C2上是否存在這樣的點G,使以O(shè)、B、F、G四點為頂點的四邊形是平行四邊形,點G的坐標(biāo)為G1(-2,5),G2(4,5),G3(2,-3).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,拋物線y=ax2-2ax與x軸交于A、B兩點(點A在點B的右側(cè)),且拋物線與直線y=-2ax-1的交點恰為拋物線的頂點C.
(1)求a的值;
(2)如果直線y=-x+b(
2
≤b≤
3
)與x軸交于點D,與線段BC交于點E,求△CDE面積的最大值;
(3)在(2)的結(jié)論下,在x軸下方,是否存在點F,使△BDF與△BCD相似?如果存在,請求出點F的坐標(biāo);不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小王利用計算機(jī)設(shè)計了一個計算程序,輸入和輸出的數(shù)據(jù)如下表:
輸入12345
輸出25101726
若輸入的數(shù)據(jù)是x時,輸出的數(shù)據(jù)是y,y是x的二次函數(shù),則y與x的函數(shù)表達(dá)式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△OAB中,∠OAB=90°,且點B的坐標(biāo)為(4,2).
(1)畫出△OAB關(guān)于點O成中心對稱的△OA1B1,并寫出點B1的坐標(biāo);
(2)求出以點B1為頂點,并經(jīng)過點B的二次函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,有一座拋物線形的拱橋,橋下的正常水位為OA,此時水面寬為40米,水面離橋的最大高度為16米,則拱橋所在的拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,對稱軸與拋物線相交于點P、與直線BC相交于點M,連接PB.
(1)求該拋物線的解析式;
(2)拋物線上是否存在一點Q,使△QMB與△PMB的面積相等?若存在,求點Q的坐標(biāo);若不存在,說明理由;
(3)在第一象限、對稱軸右側(cè)的拋物線上是否存在一點R,使△RPM與△RMB的面積相等?若存在,直接寫出點R的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2cm/s的速度向點B移動,同時點Q由點B開始沿BC邊以1cm/s的速度向點C移動.
①移動開始后第t秒時,設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取得最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形OABC在平面直角坐標(biāo)系中位置如圖所示,A、C兩點的坐標(biāo)分別為A(6,0),C(0,-3),直線y=-
3
4
x與BC邊相交于D點.
(1)求點D的坐標(biāo);
(2)若拋物線y=ax2-
9
4
x經(jīng)過點A,試確定此拋物線的表達(dá)式;
(3)設(shè)(2)中的拋物線的對稱軸與直線OD交于點M,點P為對稱軸上一動點,以P、O、M為頂點的三角形與△OCD相似,求符合條件的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,⊙A的半徑為3,A點的坐標(biāo)為(2,0),C、E分別是⊙A與y軸、x軸的交點,過C點作⊙A的切線BC交x軸于點B.
(1)求直線BC的解析式;
(2)若拋物線y=ax2+bx+c經(jīng)過B、A兩點,且頂點在直線BC上,求此拋物線的頂點的坐標(biāo);
(3)在x軸上是否存在一點P,使△PCE和△CBE相似?若存在,請你求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案