【題目】如圖①,E是直線AB,CD內(nèi)部一點(diǎn),ABCD,連接EAED

(1)探究猜想:

①若∠A=20°,∠D=40°,則∠AED= °

②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.

(2)拓展應(yīng)用:

如圖②,射線FEl1,l2交于分別交于點(diǎn)EF,ABCD,a,b,c,d分別是被射線FE隔開的4個(gè)區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個(gè)區(qū)域上的點(diǎn),猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).

【答案】(1)① 60;②∠AED=A+D;(2)當(dāng)Pa區(qū)域時(shí),∠PEB=PFC+EPF;當(dāng)P點(diǎn)在b區(qū)域時(shí),∠PFC=PEB+EPF;當(dāng)P點(diǎn)在區(qū)域c時(shí),∠EPF+PEB+PFC=360°;當(dāng)P點(diǎn)在區(qū)域d時(shí),∠EPF=PEB+PFC

【解析】試題分析:(1)①根據(jù)平行線的性質(zhì)求出角的度數(shù)即可;②本題的方法一,利用平行線的性質(zhì)和外角的性質(zhì)即可得出結(jié)論;方法二利用平行線的性質(zhì)得出即可;(2)本題分四種情況討論,畫出圖形,利用平行線的性質(zhì)和三角形外角性質(zhì)得出結(jié)論即可.

試題解析:

(1)① ∠AED=60°

②∠AED=A+D

證明:方法一、延長(zhǎng)DEABF,如圖1,

ABCD,

∴∠DFA=D,

∴∠AED=A+DFA;

方法二、過EEFAB,如圖2,

ABCD,

ABEFCD

∴∠A=AEF,∠D=DEF

∴∠AED=AEF+DEF=A+D;

(2)任意寫一個(gè)。

當(dāng)Pa區(qū)域時(shí),如圖3,∠PEB=PFC+EPF;

當(dāng)P點(diǎn)在b區(qū)域時(shí),如圖4,∠PFC=PEB+EPF;

當(dāng)P點(diǎn)在區(qū)域c時(shí),如圖5,∠EPF+PEB+PFC=360°;

當(dāng)P點(diǎn)在區(qū)域d時(shí),如圖6,∠EPF=PEB+PFC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,E、F是平行四邊形ABCD的對(duì)角線AC上的兩點(diǎn),AE=CF.

求證:(1)ABE≌△CDF;(2)BEDF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺(tái)GH型電子產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)GH型產(chǎn)品由4個(gè)G型裝置和3個(gè)H型裝置配套組成.工廠現(xiàn)有80名工人,每個(gè)工人每天能加工6個(gè)G型裝置或3個(gè)H型裝置.工廠將所有工人分成兩組同時(shí)開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.

(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?請(qǐng)列出二元一次方程組解答此問題.

(2)為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補(bǔ)充一些新工人,這些新工人只能獨(dú)立進(jìn)行G型裝置的加工,且每人每天只能加工4個(gè)G型裝置.1.設(shè)原來每天安排x名工人生產(chǎn)G型裝置,后來補(bǔ)充m名新工人,求x的值(用含m的代數(shù)式表示)2.請(qǐng)問至少需要補(bǔ)充多少名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿?wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A、B坐標(biāo)為(6,0)、(0,6),P為線段AB上的一點(diǎn)

(1) 如圖1,若SAOP12,求P的坐標(biāo)

(2) 如圖2,若PAB的中點(diǎn),點(diǎn)M、N分別是OA、OB邊上的動(dòng)點(diǎn),點(diǎn)M從頂點(diǎn)A、點(diǎn)N從頂點(diǎn)O同時(shí)出發(fā),且它們的速度都為1 cm/s,則在M、N運(yùn)動(dòng)的過程中,線段PMPN之間有何關(guān)系?并證明

(3) 如圖3,若P為線段AB上異于A、B的任意一點(diǎn),過B點(diǎn)作BDOP,交OP、OA分別與FD兩點(diǎn),EOA上一點(diǎn),且∠PEABDO,試判斷線段ODAE的數(shù)量關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的切線,B為切點(diǎn),圓心在AC上,∠A=30°,D為 的中點(diǎn).
(1)求證:AB=BC;
(2)求證:四邊形BOCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市規(guī)劃中某地段地鐵線路要穿越護(hù)城河PQ,站點(diǎn)A和站點(diǎn)B在河的兩側(cè),要測(cè)算出A、B間的距離.工程人員在點(diǎn)P處測(cè)得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達(dá)點(diǎn)Q出,測(cè)得A位于北偏東49°方向,B位于南偏西41°方向.根據(jù)以上數(shù)據(jù),求A、B間的距離.(參考數(shù)據(jù):cos41°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC的三個(gè)頂點(diǎn)A(0,10),B(8,10),C(8,0),過O、C兩點(diǎn)的拋物線y=ax2+bx+c與線段AB交于點(diǎn)D,沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處.

(1)求AD的長(zhǎng)及拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.請(qǐng)問當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形是等腰三角形?
(3)若點(diǎn)N在拋物線對(duì)稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M、N、C、E為頂點(diǎn)四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫求解過程);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)C是半圓O上一點(diǎn),∠COB=60°,點(diǎn)D是OC的中點(diǎn),連接BD,BD的延長(zhǎng)線交半圓O于點(diǎn)E,連接OE,EC,BC.
(1)求證:△BDO≌△EDC.
(2)若OB=6,則四邊形OBCE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,其頂點(diǎn)為點(diǎn)D,點(diǎn)E的坐標(biāo)為(0,﹣1),該拋物線與BE交于另一點(diǎn)F,連接BC.

(1)求該拋物線的解析式;
(2)一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),以每秒1個(gè)單位的速度沿與y軸平行的方向向上運(yùn)動(dòng),連接OM,BM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0),在點(diǎn)M的運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),∠OMB=90°?
(3)在x軸上方的拋物線上,是否存在點(diǎn)P,使得∠PBF被BA平分?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案