【題目】如圖,拋物線y=ax2+5ax+c(a<0)與x軸負半軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C點,D是拋物線的頂點,過D作DH⊥x軸于點H,延長DH交AC于點E,且S△ABD:S△ACB=9:16,
(1)求A、B兩點的坐標;
(2)若△DBH與△BEH相似,試求拋物線的解析式.
【答案】(1) ;(2) 見解析.
【解析】
(1) 根據(jù)頂點公式求出D坐標(利用a,b,c表示),得到OC,DH(利用a,b,c表示)值,因為S△ABD:S△ACB=9:16,所以得到DH:OC=9:16,得到c=4a,利用交點式得出A,B即可.
(2) 由題意可以得到,求出DH,EH(利用a表示),因為 △DBH與△BEH相似,得到,即可求出a(注意舍棄正值),得到解析式.
解:(1) ∴
∵C(0,c) ∴OC=-c,DH= ∵S△ABD:S△ACB=9∶16
∴ ∴
∴ ∴
(2)① ∵EH∥OC ∴△AEH∽△ACO ∴
∴ ∴
∵ ∵△DBH與△BEH相似
∴∠BDH=∠EBH, 又∵∠BHD=∠BHE=90°∴△DBH∽△BEH
∴ ∴
∴(舍去正值)
∴
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=4﹣x與雙曲線y交于A,B兩點,過B作直線BC⊥y軸,垂足為C,則以OA為直徑的圓與直線BC的交點坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)分別與軸、軸交于點、.頂點為的拋物線經(jīng)過點.
(1)求拋物線的解析式;
(2)點為第一象限拋物線上一動點.設(shè)點的橫坐標為,的面積為.當為何值時,的值最大,并求的最大值;
(3)在(2)的結(jié)論下,若點在軸上,為直角三角形,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點P是一個反比例函數(shù)的圖象與正比例函數(shù)y=﹣2x的圖象的公共點,PQ垂直于x軸,垂足Q的坐標為(2,0).
(1)求這個反比例函數(shù)的解析式;
(2)如果點M在這個反比例函數(shù)的圖象上,且△MPQ的面積為6,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC,∠ABC=90°,AB=BC=2,現(xiàn)將Rt△ABC繞點A逆時針旋轉(zhuǎn)30°得到△AED,則圖中陰影部分的面積是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從燈塔處觀測輪船的位置,測得輪船在燈塔北偏西的方向,輪船在燈塔北偏東的方向,且海里,海里,已知,求、兩艘輪船之間的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,點C在⊙O上,且,聯(lián)結(jié)AO,CO,并延長CO交弦AB于點D,AB=4,CD=6.
(1)求∠OAB的大;
(2)若點E在⊙O上,BE∥AO,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)【問題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關(guān)系為
(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請僅就圖2的情形給出證明;
(3)【問題發(fā)現(xiàn)】
當正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點共線時候,直接寫出線段AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x﹣2(k≠0)與y軸交于點A,與雙曲線y=在第一象限內(nèi)交于點B(3,b),在第三象限內(nèi)交于點C.
(1)求雙曲線的解析式;
(2)直接寫出不等式x﹣2>的解集;
(3)若OD∥AB,在第一象限交雙曲線于點D,連接AD,求S△AOD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com