【題目】已知:如圖,AB∥CD,∠A=∠D,試說明 AC∥DE 成立的理由.
(下面是彬彬同學進行的推理,請你將彬彬同學的推理過程補充完整.)
解:∵AB∥CD (已知)
∴∠A=(兩直線平行,內(nèi)錯角相等)
又∵∠A=∠D()
∴ =(等量代換)
∴AC∥DE ()
【答案】∠ACD;已知;∠ACD;∠D;內(nèi)錯角相等,兩直線平行
【解析】解:∵AB∥CD (已知),
∴∠A=∠ACD(兩直線平行,內(nèi)錯角相等),
又∵∠A=∠D( 已知),
∴∠ACD=∠D(等量代換),
∴AC∥DE ( 內(nèi)錯角相等,兩直線平行).
所以答案是∠ACD;已知;ACD;D;內(nèi)錯角相等,兩直線平行.
【考點精析】通過靈活運用平行線的判定與性質(zhì),掌握由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結論是平行線的性質(zhì)即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,⊙O的半徑為3, 的長為π.
(1)直線CD與⊙O相切嗎?說明理由。
(2)求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某政府部門進行公務員招聘考試,其中三人中錄取一人,他們的成績?nèi)缦拢?
人 | 測試成績 | ||
題目 | 甲 | 乙 | 丙 |
文化課知識 | 74 | 87 | 69 |
面試 | 58 | 74 | 70 |
平時表現(xiàn) | 87 | 43 | 65 |
(1)按照平均成績甲、乙、丙誰應被錄。
(2)若按照文化課知識、面試、平時表現(xiàn)的成績已4:3:1的比例錄取,甲、乙、丙誰應被錄取?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD()
∴∠2=∠CGD(等量代換)
∴CE∥BF()
∴∠=∠BFD()
又∵∠B=∠C(已知)
∴∠BFD=∠B(等量代換)
∴AB∥CD()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列條件不能判定四邊形ABCD是平行四邊形的是( )
A.AB∥CD,AD∥BC
B.AD=BC,AB=CD
C.AB∥CD,AD=BC
D.∠A=∠C,∠B=∠D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD中,E,F分別是AB,AD邊上的點,DE與CF交于點G.
(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF.求證: ;
(2)如圖②,若四邊形ABCD是平行四邊形.試探究:當∠B與∠EGC滿足什么關系時,使得成立?并證明你的結論;
(3)如圖③,若BA=BC=9,DA=DC=12,∠BAD=90°,DE⊥CF.求出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com