【題目】如圖,在正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:
(1)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A1B1C1;
(2)直接寫(xiě)出:以A、B、C為頂點(diǎn)的平形四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo) .
【答案】(1)作圖見(jiàn)解析;(2)D(1,1),(-5,3),(-3,-1)
【解析】
(1)根據(jù)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特征分別寫(xiě)出點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)A1、B1、C1的坐標(biāo),然后描點(diǎn)即可得到△A1B1C1;
(2)分類(lèi)討論:分別以AB、AC、BC為對(duì)角線畫(huà)平行四邊形,根據(jù)網(wǎng)格的特點(diǎn),確定對(duì)角線后找對(duì)邊平行,即可寫(xiě)出D點(diǎn)的坐標(biāo).
解:(1)如圖,點(diǎn)A、B、C的坐標(biāo)分別為,根據(jù)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特征,則點(diǎn)A、B、C關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)分別為,描點(diǎn)連線,△A1B1C1即為所作:
(2)分別以AB、AC、BC為對(duì)角線畫(huà)平行四邊形,如下圖所示:
則由圖可知D點(diǎn)的坐標(biāo)分別為:,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E為AD上一點(diǎn),FG⊥CE分別交AB、CD于F、G,垂足為O.
(1)求證:CE=FG;
(2)如圖2,連接OB,若AD=3DE,∠OBC=2∠DCE。
求的值;
若AD=3,則OE的長(zhǎng)為_________(直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】六(2)班同學(xué)準(zhǔn)備春游,某品牌牛奶每盒200毫升,售價(jià)2元.
(1)在甲商店購(gòu)買(mǎi),買(mǎi)5盒送一盒;在乙商場(chǎng)購(gòu)買(mǎi),九折優(yōu)惠.全班42人,要給每位同學(xué)準(zhǔn)備一瓶這樣的牛奶,該去哪家商場(chǎng)購(gòu)買(mǎi)比較合算?為什么?
(2)商店提供裝牛奶的是一個(gè)長(zhǎng)方體紙箱,下面是它的展開(kāi)圖,請(qǐng)算出這個(gè)長(zhǎng)方體紙箱的表面積.(黏貼處不算,單位:分米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在△ABC 中,AB、AC 邊的垂直平分線相交于點(diǎn) O,分別交 BC 邊于點(diǎn) M、N,連接 AM,AN.
(1)若△AMN 的周長(zhǎng)為 6,求 BC 的長(zhǎng);
(2)若∠MON=30°,求∠MAN 的度數(shù);
(3)若∠MON=45°,BM=3,BC=12,求 MN 的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OABC是平行四邊形,對(duì)角線OB在軸正半軸上,位于第一象限的點(diǎn)A和第二象限的點(diǎn)C分別在雙曲線y=和y=的一支上,分別過(guò)點(diǎn)A、C作x軸的垂線,垂足分別為M和N,則有以下的結(jié)論:①;②陰影部分面積是(k1+k2);③當(dāng)∠AOC=90°時(shí),|k1|=|k2|;④若OABC是菱形,則兩雙曲線既關(guān)于x軸對(duì)稱(chēng),也關(guān)于y軸對(duì)稱(chēng).其中正確的結(jié)論是( )
A.①②B.①④C.③④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形ABCD,點(diǎn)O為AD中點(diǎn),點(diǎn)E在BD上,連接EO并延長(zhǎng)交BC于點(diǎn)F,連接BE,DF.
(1)求證:四邊形BEDF是平行四邊形;
(2)若AB=3,AD=6,∠BAD=135°,當(dāng)四邊形BEDF為菱形時(shí),求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD平分∠BAC交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE∥BC交AC的延長(zhǎng)線于點(diǎn)E.
(1)試判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若∠E=60°,⊙O的半徑為5,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,每個(gè)小方格都是邊長(zhǎng)為1的正方形,
(1)求四邊形ABCD的面積;
(2)求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線C1:
(1) ① 無(wú)論m取何值,拋物線經(jīng)過(guò)定點(diǎn)P
② 隨著m的取值的變化,頂點(diǎn)M(x,y)隨之變化,y是x的函數(shù),則點(diǎn)M滿(mǎn)足的函數(shù)C2的關(guān)系式為__________________
(2) 如圖1,拋物線C1與x軸僅有一個(gè)公共點(diǎn),請(qǐng)?jiān)趫D1畫(huà)出頂點(diǎn)M滿(mǎn)足的函數(shù)C2的大致圖象,平行于y軸的直線l分別交C1、C2于點(diǎn)A、B.若△PAB為等腰直角三角形,判斷直線l滿(mǎn)足的條件,并說(shuō)明理由
(3) 如圖2,二次函數(shù)的圖象C1的頂點(diǎn)M在第二象限、交x軸于另一點(diǎn)C,拋物線上點(diǎn)M與點(diǎn)P之間一點(diǎn)D的橫坐標(biāo)為-2,連接PD、CD、CM、DM.若S△PCD=S△MCD,求二次函數(shù)的解析式
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com