【題目】如圖,PA、PB、CDO的切線,A、B、E是切點,CD分別交PA、PBC、D兩點,若∠APB=40°,PA=5,則下列結(jié)論:PAPB=5;PCD的周長為5;COD=70°.正確的個數(shù)為(  )

A. 3 B. 2 C. 1 D. 0

【答案】B

【解析】

根據(jù)切線長定理,可判斷①正確;將△PCD的周長轉(zhuǎn)化為PA+PB,可判斷②錯誤;連接OA、OB、OE,求出∠AOB,再由∠COD=∠COE+∠EOD=(∠AOE+∠BOE)=∠AOB,可判斷③正確;

解:∵PA、PB是⊙O的切線,

∴PA=PB,故①正確;

∵PA、PB、CD是⊙O的切線,

∴CA=CE,DE=DB,

∴△PCD的周長=PC+CE+DE+PD=PC+CA+PD+DB=PA+PB=2PA=10,故②錯誤;

連接OA、OB、OE,

∠AOB=180°-∠APB=140°,

∴∠COD=∠COE+∠EOD=(∠AOE+∠BOE)=∠AOB=70°,故③正確.

綜上可得①③正確,共2個.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級一班數(shù)學(xué)調(diào)研考試成績繪制成頻數(shù)分布直方圖,如圖(得分取整數(shù)).請根據(jù)所給信息解答下列問題:

(1)這個班有多少人參加了本次數(shù)學(xué)調(diào)研考試?

(2)60.5~70.5分?jǐn)?shù)段的頻數(shù)和頻率各是多少?

(3)請你根據(jù)統(tǒng)計圖,提出一個與(1),(2)不同的問題,并給出解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣2x+3x軸交于點C,與y軸交于點B,拋物線yax2+x+c經(jīng)過B、C兩點.

(1)求拋物線的解析式;

(2)如圖,點E是直線BC上方拋物線上的一動點,當(dāng)△BEC面積最大時,請求出點E的坐標(biāo)和△BEC面積的最大值?

(3)(2)的結(jié)論下,過點Ey軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、QA、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形紙片BDEF和直角三角板BCA,點AEF上,ACDE,FE=3,C=90°,CBA=30°.

(1)寫出三種不同類型的結(jié)論.

(2)將直角三角板繞點B旋轉(zhuǎn),在旋轉(zhuǎn)過程中,

①求點A與點E的最短距離;

②若將直角三角板繞點B從①中位置開始順時針旋轉(zhuǎn)α(0≤α≤360),使∠BAE=90°,求α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設(shè)豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點DO的直徑AB的延長線上,點CO上,ACCD,∠D=30°,

(1)請判斷CD是否O的切線?并說明理由;

(2)若O的半徑為6,求弧AC的長.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點D、E分別是邊AB、AC的中點,∠B=50°,A=26°,將ABC沿DE折疊,點A的對應(yīng)點是點A′,則∠AEA′的度數(shù)是( 。

A. 145° B. 152° C. 158° D. 160°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中有一格點三角形該三角形的三個頂點為A(1,1)、B(﹣3,1)、C(﹣3.﹣1)

(1)ABC的外接圓的圓心為P則點P的坐標(biāo)為_____

(2)如圖所示,11×8的網(wǎng)格圖內(nèi),以坐標(biāo)原點O點為位似中心ABC按相似比2:1放大,A、B、C的對應(yīng)點分別為A′、B′、C′,得到ABC′,在圖中畫出ABC′;若將ABC′沿x軸方向平移,需平移_____單位長度,能使得BC′所在的直線與P相切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黨的十八大提出,倡導(dǎo)富強(qiáng)、民主、文明、和諧,倡導(dǎo)自由、平等、公正、法治,倡導(dǎo)愛國、敬業(yè)、誠信、友善,積極培育和踐行社會主義核心價值觀24個字是社會主義核心價值觀的基本內(nèi)容其中:

富強(qiáng)、民主、文明、和諧國家層面的價值目標(biāo);

自由、平等、公正、法治社會層面的價值取向;

愛國、敬業(yè)、誠信、友善公民個人層面的價值準(zhǔn)則

小光同學(xué)將其中的文明和諧、自由、平等的文字分別貼在4張硬紙板上,制成如右圖所示的卡片將這4張卡片背面朝上洗勻后放在桌子上,從中隨機(jī)抽取一張卡片,不放回,再隨機(jī)抽取一張卡片

1小光第一次抽取的卡片上的文字是國家層面價值目標(biāo)的概率是

2請你用列表法或畫樹狀圖法,幫助小光求出兩次抽取卡片上的文字一次是國家層面價值目標(biāo)、一次

社會層面價值取向的概率卡片名稱可用字母表示).

查看答案和解析>>

同步練習(xí)冊答案