【題目】計算題
(1)20170﹣|﹣sin45°|cos45°+ ﹣(﹣ 1
(2)

【答案】
(1)解:原式=1﹣ +3+4

=8﹣

=


(2)解:原方程組化為

①﹣②得:4x=﹣4

x=﹣1

將x=﹣1代入①中,y=

解得:


【解析】(1)根據(jù)特殊角的函數(shù)值即可求出答案.(2)先化簡原方程組,然后根據(jù)二元一次方程組的解法即可
【考點精析】通過靈活運用零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì),掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1P點從點A開始以2厘米/秒的速度沿ABC的方向移動,點Q從點C開始以1厘米/秒的速度沿CAB的方向移動,在直角三角形ABC中,∠A90°,若AB16厘米,AC12厘米,BC20厘米,如果P、Q同時出發(fā),用t(秒)表示移動時間,那么:

1)如圖1,若P在線段AB上運動,Q在線段CA上運動,試求出t為何值時,QAAP

2)如圖2,點QCA上運動,試求出t為何值時,三角形QAB的面積等于三角形ABC面積的

3)如圖3,當P點到達C點時,P、Q兩點都停止運動,試求當t為何值時,線段AQ的長度等于線段BP的長的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的菱形ABCD中,∠DAB=60°,連接對角線AC,以AC為邊作第二個菱形,使,連接,再以為邊作第三個菱形,使;…,按此規(guī)律所作的第六個菱形的邊長為( )

A. 9 B. C. 27 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)問題背景
如圖①,BC是⊙O的直徑,點A在⊙O上,AB=AC,P為BmC上一動點(不與B,C重合),求證: PA=PB+PC.

小明同學(xué)觀察到圖中自點A出發(fā)有三條線段AB,AP,AC,且AB=AC,這就為旋轉(zhuǎn)作了鋪墊.于是,小明同學(xué)有如下思考過程:
第一步:將△PAC繞著點A順時針旋轉(zhuǎn)90°至△QAB(如圖①);
第二步:證明Q,B,P三點共線,進而原題得證.
請你根據(jù)小明同學(xué)的思考過程完成證明過程.
(2)類比遷移
如圖②,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內(nèi)一點,AB=AC,AB⊥AC,垂足為A,求OC的最小值.

(3)拓展延伸
如圖③,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內(nèi)一點,AB= AC,AB⊥AC,垂足為A,則OC的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A、B均在函數(shù)y= (k>0,x>0)的圖象上,⊙A與x軸相切,⊙B與y軸相切.若點B的坐標為(1,6),⊙A的半徑是⊙B的半徑的2倍,則點A的坐標為(
A.(2,2)
B.(2,3)
C.(3,2)
D.(4,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船C的求救信號.已知A、B兩船相距100( +1)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測點D,測得船C正好在觀測點D的南偏東75°方向上.

(1)分別求出A與C,A與D間的距離AC和AD(如果運算結(jié)果有根號,請保留根號).
(2)已知距離觀測點D處100海里范圍內(nèi)有暗礁,若巡邏船A沿直線AC去營救船C,在去營救的途中有無觸礁的危險?(參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(0,1),直線l:y=﹣1.動點P滿足條件:

①P在這個平面直角坐標系中;
②P到A的距離和P到l的距離相等;
(1)求點P所經(jīng)過的軌跡方程,并在網(wǎng)格中繪制這個圖象.(提示:平面直角坐標系中兩點之間的距離可以通過勾股定理來求得)
(2)已知直線y=kx+1,小明同學(xué)說,這條直線與(1)中所繪的圖象有兩個交點?你能說明小明為什么這么說嗎?
(3)經(jīng)過了上述的計算、繪圖,小明發(fā)現(xiàn),如果第(2)問的兩個交點分別為B、C,那么,過BC的中點M作直線l的垂線,垂足為H,連接BH、CH,所得到的三角形BCH是個特殊的三角形,你能說明它是什么三角形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解全校學(xué)生上學(xué)期參加社區(qū)活動的情況,學(xué)校隨機調(diào)查了本校50名學(xué)生參加社區(qū)活動的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:

參加社區(qū)活動次數(shù)的頻數(shù)、頻率分布表

根據(jù)以上圖表信息,解答下列問題:

1)表中a= b= ;

2)請把頻數(shù)分布直方圖補充完整(畫圖后請標注相應(yīng)的數(shù)據(jù));

3)若該校共有1200名學(xué)生,請估計該校在上學(xué)期參加社區(qū)活動超過6次的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC和等腰Rt△DEF均內(nèi)接于⊙O,∠D=Rt∠,EF∥AC,AC分別交DE,DF于點P,Q,EF分別交AB,BC于點G,H,則 的值是(

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案