一次函數(shù)中,y的值隨x值增大而_________.(填“增大”或“減小”)
減小
分析:先判斷出一次函數(shù)y=-2x+3中k的符號,再根據(jù)一次函數(shù)的增減性進行解答即可.
解答:解:∵一次函數(shù)y=-2x+3中k=-2<0,
∴y的值隨x值增大而減小.
故答案為:減。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,函數(shù)的圖象相交于(-1,1),(2,2)兩點.當
時,x的取值范圍是(   )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(滿分8分)在直角坐標系xOy中,直線l過(1,3)和(3,1)兩點,且與x
軸,y軸分別交于A,B兩點.
(1)求直線l的函數(shù)關(guān)系式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

時鐘在正常運行時,分針每分鐘轉(zhuǎn)動6°,時針每分鐘轉(zhuǎn)動0.5°.在運行過程中,時針與分針的夾角會隨著時間的變化而變化.設(shè)時針與分針的夾角為y(度),運行時間為t(分),當時間從12︰00開始到12︰30止,y t之間的函數(shù)圖象是(   ).
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一個正常人在做激烈運動時,心跳速度加快,當運動停止下來后,心跳次數(shù)N(次)與時間s(分)的函數(shù)關(guān)系圖像大致是  (     )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011•重慶)某企業(yè)為重慶計算機產(chǎn)業(yè)基地提供電腦配件,受美元走低的影響,從去年1至9月,該配件的原材料價格一路攀升,每件配件的原材料價格y1(元)與月份x(1≤x≤9,且x取整數(shù))之間的函數(shù)關(guān)系如下表:
月份x
1
2
3
4
5
6
7
8
9
價格y1(元/件)
560
580
600
620
640
660
680
700
720
隨著國家調(diào)控措施的出臺,原材料價格的漲勢趨緩,10至12月每件配件的原材料價格y2(元)與月份x(10≤x≤12,且x取整數(shù))之間存在如圖所示的變化趨勢:

(1)請觀察題中的表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;
(2)若去年該配件每件的售價為1000元,生產(chǎn)每件配件的人力成本為50元,其它成本30元,該配件在1至9月的銷售量p1(萬件)與月份x滿足函數(shù)關(guān)系式p1=0.1x+1.1(1≤x≤9,且x取整數(shù))10至12月的銷售量p2(萬件)與月份x滿足函數(shù)關(guān)系式p2=﹣0.1x+2.9(10≤x≤12,且x取整數(shù)).求去年哪個月銷售該配件的利潤最大,并求出這個最大利潤;
(3)今年1至5月,每件配件的原材料價格均比去年12月上漲60元,人力成本比去年增加20%,其它成本沒有變化,該企業(yè)將每件配件的售價在去年的基礎(chǔ)上提高a%,與此同時每月銷售量均在去年12月的基礎(chǔ)上減少0.1a%.這樣,在保證每月上萬件配件銷量的前提下,完成了1至5月的總利潤1700萬元的任務,請你參考以下數(shù)據(jù),估算出a的整數(shù)值.
(參考數(shù)據(jù):992=9901,982=9604,972=9409,962=9216,952=9025)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)因長期干旱,甲水庫蓄水量降到了
正常水位的最低值.為灌溉需要,由乙水庫向甲水庫勻速
供水,20h后,甲水庫打開一個排灌閘為農(nóng)田勻速灌溉,
又經(jīng)過20h,甲水庫打開另一個排灌閘同時灌溉,再經(jīng)過
40h,乙水庫停止供水.甲水庫每個排泄閘的灌溉速度相
同,圖中的折線表示甲水庫蓄水量Q (萬m3) 與時間t (h) 之間的函數(shù)關(guān)系.
求:(1)線段BC的函數(shù)表達式;
(2)乙水庫供水速度和甲水庫一個排灌閘的灌溉速度;
(3)乙水庫停止供水后,經(jīng)過多長時間甲水庫蓄水量又降到了正常水位的最低值?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2011•泰安)已知一次函數(shù)y=mx+n﹣2的圖象如圖所示,則m、n的取值范圍是( 。
A.m>0,n<2B.m>0,n>2
C.m<0,n<2D.m<0,n>2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

重慶市墊江縣具有2000多年的牡丹種植歷史.每年3月下旬至4月上旬,主要分布在該縣太平鎮(zhèn)、澄溪鎮(zhèn)明月山一帶的牡丹迎春怒放,美不勝收.由于牡丹之根———丹皮是重要中藥材,目前已種植有60多個品種2萬余畝牡丹的墊江,因此成為我國丹皮出口基地,獲得“丹皮之鄉(xiāng)”的美譽。為了提高農(nóng)戶收入,該縣決定在現(xiàn)有基礎(chǔ)上開荒種植牡丹并實行政府補貼,規(guī)定每新種植一畝牡丹一次性補貼農(nóng)戶若干元,經(jīng)調(diào)查,種植畝數(shù)(畝)與補貼數(shù)額(元)之間成一次函數(shù)關(guān)系,且補貼與種植情況如下表:
補貼數(shù)額(元)
     10
      20
    ……
種植畝數(shù)(畝)
     160
      240
……
隨著補貼數(shù)額的不斷增大,種植規(guī)模也不斷增加,但每畝牡丹的收益(元)會相應降低,且該縣補貼政策實施前每畝牡丹的收益為3000元,而每補貼10元(補貼數(shù)為10元的整數(shù)倍),每畝牡丹的收益會相應減少30元.
(1)分別求出政府補貼政策實施后,種植畝數(shù)(畝)、每畝牡丹的收益(元)與政府補貼數(shù)額(元)之間的函數(shù)關(guān)系式;
(2)要使全縣新種植的牡丹總收益(元)最大,又要從政府的角度出發(fā),政府應將每畝補貼數(shù)額定為多少元?并求出總收益的最大值和此時種植畝數(shù);(總收益=每畝收益×畝數(shù))
(3)在(2)問中取得最大總收益的情況下,為了發(fā)展旅游業(yè),需占用其中不超過50畝的新種牡丹園,利用其樹間空地種植剛由國際牡丹園培育出的“黑桃皇后”.已知引進該新品種平均每畝的費用為530元,此外還要購置其它設(shè)備,這項費用(元)等于種植面積(畝)的平方的25倍.這樣混種了“黑桃皇后”的這部分土地比原來種植單一品種牡丹時每畝的平均收益增加了2000元,這部分混種土地在扣除所有費用后總收益為85000元.求混種牡丹的土地有多少畝?(結(jié)果精確到個位)(參考數(shù)據(jù):)

查看答案和解析>>

同步練習冊答案